Drone imagery is becoming the main source of overhead information to support decisions in many different fields, especially with deep learning integration. Datasets to train object detection and semantic segmentation models to solve geospatial data analysis are called GeoAI datasets. They are composed of images and corresponding labels represented by full-size masks typically obtained by manual digitizing. GIS software is made of a set of tools that can be used to automate tasks using geo-referenced raster and vector layers. This work describes a workflow using GIS tools to produce GeoAI datasets. In particular, it mentions the steps to obtain ground truth data from OSM and use methods for geometric and spectral augmentation and the data fusion of drone imagery. A method semi-automatically produces masks for point and line objects, calculating an optimum buffer distance. Tessellation into chips, pairing and imbalance checking is performed over the image–mask pairs. Dataset splitting into train–validation–test data is done randomly. All of the code for the different methods are provided in the paper, as well as point and road datasets produced as examples of point and line geometries, and the original drone orthomosaic images produced during the research. Semantic segmentation results performed over the point and line datasets using a classical U-Net show that the semi-automatically produced masks, called primitive masks, obtained a higher mIoU compared to other equal-size masks, and almost the same mIoU metric compared to full-size manual masks.
Detection and Semantic Segmentation of vehicles in drone aerial orthomosaics has applications in a variety of fields such as security, traffic and parking management, urban planning, logistics, and transportation, among many others. This paper presents the HAGDAVS dataset fusing RGB spectral channel and Digital Surface Model DSM for the detection and segmentation of vehicles from aerial drone images, including three vehicle classes: cars, motorcycles, and ghosts (motorcycle or car). We supply DSM as an additional variable to be included in deep learning and computer vision models to increase its accuracy. RGB orthomosaic, RG-DSM fusion, and multi-label mask are provided in Tag Image File Format. Geo-located vehicle bounding boxes are provided in GeoJSON vector format. We also describes the acquisition of drone data, the derived products, and the workflow to produce the dataset. Researchers would benefit from using the proposed dataset to improve results in the case of vehicle occlusion, geo-location, and the need for cleaning ghost vehicles. As far as we know, this is the first openly available dataset for vehicle detection and segmentation, comprising RG-DSM drone data fusion and different color masks for motorcycles, cars, and ghosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.