Measurements of high‐altitude pressure waves from underground and surface explosions are of interest, as these waves can affect ionospheric electron density and be a source of infrasonic signals. Canisters, equipped with parachutes, were dropped from aircraft to determine time histories of pressure waves radiated by the ground surface above an underground nuclear explosion and a surface chemical explosion. These canisters contained transducers to document pressure and acceleration histories as well as a transmitter to relay information to ground receiver stations. We found observed pressure histories from the underground explosion to be consistent with histories calculated from surface ground motion records. The peak blast wave overpressures from the chemical explosion agreed with predicted scaled values. Observed time histories, however, had shorter positive phase duration than predicted with scaling.
Histories of the air pressure wave radiated from the eruption of Mount St. Helens on May 18, 1980, were calculated for two models of the eruption cloud expansion. The first considered the wave radiated from an accelerated plane surface, while the second examined the wave radiated from an expanding hemisphere. Two histories of eruption cloud motion based on photographs were used. Peak positive overpressures were about the same for these cloud motion histories of expansion into a hemisphere was assumed. If an accelerated planar source model was used, the peak positive pressures have again about the same value in east and west direction, but values are about half in the north and south direction. Observed peak overpressures at microbarograph stations are somewhat higher than the calculated with the most marked departures at the greater surface ranges. These observed overpressures may have been about half the correct values, however. Microbarograph records show a weaker rarefaction than calculated histories or none at all. This can be explained, in part, by a lack of areal motion coherence in the slowing eruption cloud. It is also possible the net ash cloud volume increased considerably after its vertical growth ceased and weakened the negative phase as well as lengthening the positive phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.