ABSTRACT. This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic studies. We propose a scheme that is based on nameless ranked systematics. The vocabulary of the taxonomy is updated, particularly to clarify the naming of groups that have been repositioned. We recognize six clusters of eukaryotes that may represent the basic groupings similar to traditional ''kingdoms.'' The multicellular lineages emerged from within monophyletic protist lineages: animals and fungi from Opisthokonta, plants from Archaeplastida, and brown algae from Stramenopiles.
Complete 18S ribosomal RNA gene sequences were determined for 8 Eimeria species of chickens and for Eimeria bovis of cattle. Sequences were aligned with each other and with sequences from 2 Sarcocystis spp., Toxoplasma gondii, Neospora caninum, and 4 Cryptosporidium spp. Aligned sequences were analyzed by maximum parsimony to infer evolutionary relationships among the avian Eimeria species. Eimecia bovis was found to be the sister taxon to the 8 Eimeria species infecting chickens. Within the avian Eimeria species, E. necatrix and E. tenella were sister taxa: this clade attached basally to the other chicken coccidia. The remaining Eimeria spp. formed 3 clades that correlated with similarities based on oocyst size and shape. Eimeria mitis and Eimeria mivati (small, near spherical oocysts) formed the next most basal clade followed by a clade comprising Eimeria praecox. Eimeria maxima, and Eimeria brumetti (large, oval oocysts), which was the sister group to Eimeria acervulina (small, oval oocysts). The 4 clades of avian Eimeria species were strongly supported in a bootstrap analysis. Basal rooting of E. necatrix and E. tenella between E. bovis and the remaining Eimeria species and the apparent absence of coccidia that infect the ceca of jungle fowl all suggest that E. necatrix and E. tenella may have arisen from a host switch, perhaps from the North American turkey, Meleagris gallopavo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.