Identifying isomeric metabolites remains a challenging and time-consuming process with both sensitivity and unambiguous structural assignment typically only achieved through the combined use of LC–MS and NMR. Ion mobility mass spectrometry (IMMS) has the potential to produce timely and accurate data using a single technique to identify drug metabolites, including isomers, without the requirement for in-depth interpretation (cf. MS/MS data) using an automated computational pipeline by comparison of experimental collision cross-section (CCS) values with predicted CCS values. An ion mobility enabled Q-Tof mass spectrometer was used to determine the CCS values of 28 (14 isomeric pairs of) small molecule glucuronide metabolites, which were then compared to two different in silico models; a quantum mechanics (QM) and a machine learning (ML) approach to test these approaches. The difference between CCS values within isomer pairs was also assessed to evaluate if the difference was large enough for unambiguous structural identification through in silico prediction. A good correlation was found between both the QM- and ML-based models and experimentally determined CCS values. The predicted CCS values were found to be similar between ML and QM in silico methods, with the QM model more accurately describing the difference in CCS values between isomer pairs. Of the 14 isomeric pairs, only one (naringenin glucuronides) gave a sufficient difference in CCS values for the QM model to distinguish between the isomers with some level of confidence, with the ML model unable to confidently distinguish the studied isomer pairs. An evaluation of analyte structures was also undertaken to explore any trends or anomalies within the data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.