This and a companion paper compare the results from shaking-table testing, quasi-static testing, and analytical predictions, to provide a coherent description of the seismic response of low-rise reinforced masonry buildings with flexible roof diaphragms. Two half-scale, low-rise reinforced masonry buildings with flexible roof diaphragms are subjected to earthquake ground motions on the Tri-axial Earthquake and Shock Simulator at the United States Army Construction Engineering Research Laboratory, Engineer Research and Development Center. Following the shaking-table tests, diaphragms and top four courses of attached masonry walls are salvaged from the half-scale structures and tested quasi-statically in their own plane. In contrast to what is usually assumed in design, the half-scale specimens do not behave as systems with a single degree of freedom associated with the in-plane response of the shear walls, but rather a system with a dominant degree of freedom associated with the in-plane response of the roof diaphragm. A new index describing the potential for diaphragm damage is introduced, the diaphragm drift ratio. A companion paper, Part II: Analytical Modeling, presents analytical work intended to corroborate and extend results from experimental testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.