Polyketide synthases catalyze the assembly of complex natural products from simple precursors such as propionyl-CoA and methylmalonyl-CoA in a biosynthetic process that closely parallels fatty acid biosynthesis. Like fatty acids, polyketides are assembled by successive decarboxylative condensations of simple precursors. But whereas the intermediates in fatty acid biosynthesis are fully reduced to generate unfunctionalized alkyl chains, the intermediates in polyketide biosynthesis may be only partially processed, giving rise to complex patterns of functional groups. Additional complexity arises from the use of different starter and chain extension substrates, the generation of chiral centers, and further functional group modifications, such as cyclizations. The structural and functional modularity of these multienzyme systems has raised the possibility that polyketide biosynthetic pathways might be rationally reprogrammed by combinatorial manipulation. An essential prerequisite for harnessing this biosynthetic potential is a better understanding of the molecular recognition features of polyketide synthases. Within this decade, a variety of genetic, biochemical, and chemical investigations have yielded insights into the tolerance and specificity of several architecturally different polyketide synthases. The results of these studies, together with their implications for biosynthetic engineering, are summarized in this review.
A genetic block was introduced in the first condensation step of the polyketide biosynthetic pathway that leads to the formation of 6-deoxyerythronolide B (6-dEB), the macrocyclic precursor of erythromycin. Exogenous addition of designed synthetic molecules to small-scale cultures of this null mutant resulted in highly selective multimilligram production of unnatural polyketides, including aromatic and ring-expanded variants of 6-dEB. Unexpected incorporation patterns were observed, illustrating the catalytic versatility of modular polyketide synthases. Further processing of some of these scaffolds by postpolyketide enzymes of the erythromycin pathway resulted in the generation of novel antibacterials with in vitro potency comparable to that of their natural counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.