We investigated the reactions of formaldehyde plus acetaldehyde with dGuo and DNA in order to determine whether certain 1,N(2)-propano-dGuo adducts could be formed. These adducts-3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purine-(3H)-one (1) and 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxypyrimido[1,2-a]purine-(3H)-one (3a,b)-have been previously characterized as products of the reaction of acrolein with dGuo and DNA. Adduct 1 predominates in certain model lipid peroxidation systems [Pan, J., and Chung, F. L. (2002) Chem. Res. Toxicol. 15, 367-372]. We hypothesized that this could be due to stepwise reactions of formaldehyde and acetaldehyde with dGuo, rather than by reaction of acrolein with dGuo. The results demonstrated that adducts 1 and 3a,b were relatively minor products of the reaction of formaldehyde and acetaldehyde with dGuo and that there was no selectivity in their formation. These findings did not support our hypothesis. However, substantial amounts of previously unknown cyclic dGuo adducts were identified in this reaction. The new adducts were characterized by their MS, UV, and NMR spectra as diastereomers of 3-(2'-deoxyribosyl)-6-methyl-1,3,5-diazinan[4,5-a]purin-10(3H)-one (10a,b). Adducts 10a,b were apparently formed by addition of formaldehyde to N1 of N(2)-ethylidene-dGuo, followed by cyclization. An analogous set of four diastereomers of 3-(2'-deoxyribosyl)-6,8-dimethyl-1,3,5-diazinan[4,5-a]purin-10(3H)-one (12a-d) were formed in the reactions of acetaldehyde with dGuo. These products are the first examples of exocyclic dGuo adducts of the pyrimido[1,2-a]purine type in which an oxygen atom is incorporated into the exocyclic ring. Formaldehyde-derived adducts were the other major products of the reactions of formaldehyde plus acetaldehyde with dGuo. Prominent among these were N(2)-hydroxymethyl-dGuo (9) and the cross-link di-(N(2)-deoxyguaonosyl)methane (13). We did not detect adducts 1, 3a,b, or 10a,b in enzymatic hydrolysates of DNA that had been allowed to react with formaldehyde plus acetaldehyde. However, we did detect substantial amounts of the formaldehyde cross-links di-(N(6)-deoxyadenosyl)methane (17), with lesser quantities of (N(6)-deoxyadenosyl-N(2)-deoxyguanosyl)methane (18), di-(N(2)-deoxyguanosyl)methane (13), and N(6)-hydroxymethyl-dAdo (19). Schiff base adducts of formaldehyde and acetaldehyde were also detected in these reactions. These results demonstrate that the reactions of formaldehyde plus acetaldehyde with dGuo are dominated by newly identified cyclic adducts and formaldehyde-derived products whereas the reactions with DNA result in the formation of formaldehyde cross-link adducts. The carcinogens formaldehdye and acetaldehyde occur in considerable quantities in the human body and in the environment. Therefore, further research is required to determine whether the adducts described here are formed in animals or humans exposed to these agents.
This article is available online at http://dmd.aspetjournals.org ABSTRACT:The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its carbonyl-reduction product, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), are potent lung carcinogens in rats and are presumed human lung carcinogens. NNK and NNAL are bioactivated to DNA-binding intermediates via hydroxylation of the carbon atoms adjacent to the nitroso moiety (i.e., ␣-hydroxylation) by cytochrome P450s (P450s). Therefore, it is important to delineate which P450s are efficient catalysts of this metabolic transformation. In this study, the kinetic parameters for NNK and NNAL metabolism were determined for two extrahepatic P450s that are expressed in the lung: rat P450 2A3 and human P450 2A13.
Stereochemical determinants of the tumorigenicity and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were investigated using the stereospecifically deuterated isotopomers (4R)-[4-(2)H(1)]NNK and (4S)-[4-(2)H(1)]NNK. Upon ip administration to groups of 20 female A/J mice, NNK and (4S)-[4-(2)H(1)]NNK exhibited similar lung tumorigenicity at three different doses, whereas (4R)-[4-(2)H(1)]NNK was 2-fold less tumorigenic at all three doses. In a parallel experiment, levels of O(6)-methylguanine and 7-methylguanine were 2-fold lower in lung DNA of mice treated with (4R)-[4-(2)H(1)]NNK than in mice treated with NNK or (4S)-[4-(2)H(1)]NNK. To corroborate these in vivo data, the in vitro metabolism of these compounds was investigated using A/J mouse lung microsomes and Spodoptera frugiperda (Sf9)-expressed mouse cytochrome p450s 2A4 and 2A5. Kinetic isotope effects on the apparent V(max) ((D)V) for the product of NNK 4-hydroxylation, OPB, were 2.7 +/- 0.2 and 2.8 +/- 0.4 when (4R)- and (4S)-[4-(2)H(1)]NNK were incubated with mouse lung microsomes, respectively. The (D)V values for OPB formation were 3.2 +/- 0.2 and 2.2 +/- 0.2 when (4R)-[4-(2)H(1)]NNK was the substrate for p2A4 and 2A5, respectively, whereas they were 1.3 +/- 0.1 and 1.1 +/- 0.1 when (4S)-[4-(2)H(1)]NNK was the substrate for these respective enzymes. Analysis of an OPB derivative (10) for deuterium content by LC/MS confirmed the results from the kinetic assays and indicated that p450s 2A4 and 2A5 preferentially abstract the pro-R 4-hydrogen of NNK. The results obtained using Sf9-expressed p450s provide a rationale for the differences observed in the lung tumor and DNA adduct experiments, namely, that the attenuated tumorigenicity of (4R)-[4-(2)H(1)]NNK relative to (4S)-[4-(2)H(1)]NNK is due to prochiral selectivity during p450-catalyzed metabolic activation.
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a lung carcinogen in mice and rats and is a putative human lung carcinogen. NNK undergoes cytochrome p450-mediated metabolic activation to DNA-binding intermediates but is also extensively reduced to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in vivo. Because NNAL is also tumorigenic, the carcinogenicity of NNK may actually be governed by the metabolic activation of NNAL, rather than direct activation of NNK. Metabolism of NNK and NNAL at the 4-position generates the same critical DNA lesion, O(6)-methylguanine, the levels of which are correlated to tumorigenicity in the A/J mouse model. In an effort to better understand the bioactivation of NNAL and the effect of carbinol-carbon stereochemistry on prochiral selectivity at the 4-position, (R)- and (S)-NNAL, along with the stereospecifically 4-deuterated diastereomers (1R,4R)-[4-(2)H(1)]NNAL, (1R,4S)-[4-(2)H(1)]NNAL, (1S,4R)-[4-(2)H(1)]NNAL, and (1S,4S)-[4-(2)H(1)]NNAL, were synthesized. The in vitro metabolism of these compounds was investigated using A/J mouse lung microsomes and Spodoptera frugiperda-expressed mouse cytochrome p450 2A5. Carbinol-carbon stereochemistry did not appreciably influence stereoselectivity at the 4-position in the metabolism of these compounds by mouse lung microsomes or p450 2A5 but did influence the regiochemistry of metabolism. The ratio of 4- to N-methyl hydroxylation was approximately 1:1 for the A/J mouse lung microsome-mediated metabolism of all substrates, but this ratio was higher for (1S) substrates than for their (1R) counterparts when p450 2A5 was used. Interestingly, p450 2A5 converted substrates with (1S) stereochemistry to the respective N-oxides, but this metabolite was not formed from substrates with (1R) stereochemistry. Furthermore, p450 2A5 catalyzed the formation of NNK from (1S) substrates at significantly greater maximal rates than from (1R) substrates. The implications of these differences in metabolism for the tumorigenic mechanism of NNAL are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.