. Novel methods improve prediction of species' distributions from occurrence data. Á/ Ecography 29: 129 Á/151.Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve. J. Elith
Summary 1.Ecologists use statistical models for both explanation and prediction, and need techniques that are flexible enough to express typical features of their data, such as nonlinearities and interactions. 2. This study provides a working guide to boosted regression trees (BRT), an ensemble method for fitting statistical models that differs fundamentally from conventional techniques that aim to fit a single parsimonious model. Boosted regression trees combine the strengths of two algorithms: regression trees (models that relate a response to their predictors by recursive binary splits) and boosting (an adaptive method for combining many simple models to give improved predictive performance). The final BRT model can be understood as an additive regression model in which individual terms are simple trees, fitted in a forward, stagewise fashion. 3. Boosted regression trees incorporate important advantages of tree-based methods, handling different types of predictor variables and accommodating missing data. They have no need for prior data transformation or elimination of outliers, can fit complex nonlinear relationships, and automatically handle interaction effects between predictors. Fitting multiple trees in BRT overcomes the biggest drawback of single tree models: their relatively poor predictive performance. Although BRT models are complex, they can be summarized in ways that give powerful ecological insight, and their predictive performance is superior to most traditional modelling methods. 4. The unique features of BRT raise a number of practical issues in model fitting. We demonstrate the practicalities and advantages of using BRT through a distributional analysis of the short-finned eel ( Anguilla australis Richardson), a native freshwater fish of New Zealand. We use a data set of over 13 000 sites to illustrate effects of several settings, and then fit and interpret a model using a subset of the data. We provide code and a tutorial to enable the wider use of BRT by ecologists.
Species distribution models (SDMs) are numerical tools that combine observations of species occurrence or abundance with environmental estimates. They are used to gain ecological and evolutionary insights and to predict distributions across landscapes, sometimes requiring extrapolation in space and time. SDMs are now widely used across terrestrial, freshwater, and marine realms. Differences in methods between disciplines reflect both differences in species mobility and in “established use.” Model realism and robustness is influenced by selection of relevant predictors and modeling method, consideration of scale, how the interplay between environmental and geographic factors is handled, and the extent of extrapolation. Current linkages between SDM practice and ecological theory are often weak, hindering progress. Remaining challenges include: improvement of methods for modeling presence-only data and for model selection and evaluation; accounting for biotic interactions; and assessing model uncertainty.
Abstract. Most methods for modeling species distributions from occurrence records require additional data representing the range of environmental conditions in the modeled region. These data, called background or pseudo-absence data, are usually drawn at random from the entire region, whereas occurrence collection is often spatially biased toward easily accessed areas. Since the spatial bias generally results in environmental bias, the difference between occurrence collection and background sampling may lead to inaccurate models. To correct the estimation, we propose choosing background data with the same bias as occurrence data. We investigate theoretical and practical implications of this approach. Accurate information about spatial bias is usually lacking, so explicit biased sampling of background sites may not be possible. However, it is likely that an entire target group of species observed by similar methods will share similar bias. We therefore explore the use of all occurrences within a target group as biased background data. We compare model performance using target-group background and randomly sampled background on a comprehensive collection of data for 226 species from diverse regions of the world. We find that target-group background improves average performance for all the modeling methods we consider, with the choice of background data having as large an effect on predictive performance as the choice of modeling method. The performance improvement due to target-group background is greatest when there is strong bias in the target-group presence records. Our approach applies to regression-based modeling methods that have been adapted for use with occurrence data, such as generalized linear or additive models and boosted regression trees, and to Maxent, a probability density estimation method. We argue that increased awareness of the implications of spatial bias in surveys, and possible modeling remedies, will substantially improve predictions of species distributions.
We analysed relationships between demersal fish species richness, environment and trawl characteristics using an extensive collection of trawl data from the oceans around New Zealand. Analyses were carried out using both generalised additive models and boosted regression trees (sometimes referred to as 'stochastic gradient boosting'). Depth was the single most important environmental predictor of variation in species richness, with highest richness occurring at depths of 900 to 1000 m, and with a broad plateau of moderately high richness between 400 and 1100 m. Richness was higher both in waters with high surface concentrations of chlorophyll a and in zones of mixing of water bodies of contrasting origins. Local variation in temperature was also important, with lower richness occurring in waters that were cooler than expected given their depth. Variables describing trawl length, trawl speed, and cod-end mesh size made a substantial contribution to analysis outcomes, even though functions fitted for trawl distance and cod-end mesh size were constrained to reflect the known performance of trawl gear. Species richness declined with increasing cod-end mesh size and increasing trawl speed, but increased with increasing trawl distance, reaching a plateau once trawl distances exceed about 3 nautical miles. Boosted regression trees provided a powerful analysis tool, giving substantially superior predictive performance to generalized additive models, despite the fitting of interaction terms in the latter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.