Certain neurochemical and connectional characteristics common to extended amygdala and the nucleus accumbens shell suggest that the two represent a single functional-anatomical continuum. If this is so, it follows that the outputs of the two structures should be substantially similar. To address this, projections from the caudomedial shell and central nucleus of the amygdala, a key extended amygdala structure, were demonstrated in Sprague-Dawley rats with different anterograde axonal tracers processed separately to exhibit distinguishable brown and blue-black precipitates. The caudomedial shell projection is strong in the ventral pallidum and along the medial forebrain bundle through the lateral preopticohypothalamic continuum into the ventral tegmental area, distal to which it thins abruptly. The central nucleus projects strongly to the bed nucleus of the stria terminalis and the sublenticular extended amygdala, but substantially to the lateral hypothalamus only at levels behind the rostral part of the entopeduncular nucleus. Innervation of the ventral tegmental area by the central amygdala is minimal, but the lateral one-third of the substantia nigra, pars compacta and an adjacent lateral part of the retrorubral field receive substantial central amygdala input. Central amygdaloid projections are robust in caudal brainstem sites, such as the reticular formation, parabrachial nucleus, nucleus of the solitary tract and dorsal vagal complex, all of which receive little input from the accumbens. The substantial differences in the output systems of the caudomedial shell of accumbens and central amygdala suggest that the two represent distinct functional-anatomical systems.
section, type 1 diabetes and type 2 were switched in the text of the seventh sentence so that it now correctly reads: "Enhanced glucose control is much more effective at preventing neuropathy in patients with type 1 diabetes than in those with type 2 disease." In addition, in the text and figure 2 we clarified "calcium channel blockers" as "antiepileptic drugs that block calcium channels."
BACKGROUND
Surveillance colonoscopy using random biopsies to detect colitis-associated cancer (CAC) suffers from poor sensitivity. Although chromo-endoscopy improves detection, acceptance in the community has been slow. Here, we examine the usefulness of near infrared fluorescence (NIRF) endoscopy to image molecular probes for cathepsin activity in colitis-induced dysplasia.
METHODS
In patient samples, cathepsin activity was correlated with colitis and dysplasia. In mice, cathepsin activity was detected as fluorescent hydrolysis product of substrate based probes (SBPs) after injection into IL-10−/− colitic mice. Fluorescence colonoscopy and colonic whole mount imaging were performed prior to complete sectioning and pathology review of resected colons.
RESULTS
Cathepsin activity was 5 and 8 – fold higher in dysplasia and CAC respectively, compared to areas of mild colitis in patient tissue sections. The signal to noise ratios for dysplastic lesions seen by endoscopy in IL-10−/− mice were 5.2 ±1.3, (P=0.0001). Lesions with increased NIRF emissions were classified as raised or flat dysplasia, lymphoid tissue and ulcers. Using images collected by endoscopy, a receiver operating characteristic curve (ROC) for correctly diagnosing dysplasia was calculated. The area under the curve was 0.927. At a cut off of 1000 MFI, the sensitivity and specificity for detecting dysplasia were 100% and 83% respectively. Analysis revealed that enhanced NIRF emissions derived from increased numbers of infiltrating myeloid derived suppressor cells and macrophages with equivalent cathepsin activity.
CONCLUSIONS
These studies indicate that cathepsin SBP imaging correctly identifies dysplastic foci within chronically inflamed colons. Cathepsin-based NIRF endoscopy presents unique advantages that may increase sensitivity and specificity of surveillance colonoscopy in patients with CUC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.