The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic fieldof-view deflection, the eight spectrometers for each species together provide 4pi-sr field-ofview with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eV/q to 30000 eV/q. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory's Instrument Suite Central Instrument Data Processor. This paper describes the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.
The onset of phytoplankton blooms in late winter, early spring has been traditionally associated with the shoaling of the mixed layer above a critical depth. Here we show that the onset of a bloom can also be triggered by a reduction in air–sea fluxes at the end of winter. When net cooling subsides at the end of winter, turbulent mixing becomes weak, thereby increasing the residence time of phytoplankton cells in the euphotic layer and allowing a bloom to develop. The necessary change in the air–sea flux generally precedes mixed‐layer shoaling, and may provide a better indicator for the onset of the spring bloom than the mixed‐layer depth alone. Our hypothesis is supported by numerical simulations and remote sensing data.
In this study, the influence of a geostrophically balanced horizontal density gradient on turbulent convection in the ocean is examined using numerical simulations and a theoretical scaling analysis. Starting with uniform horizontal and vertical buoyancy gradients, convection is driven by imposing a heat loss or a destabilizing wind stress at the upper boundary, and a turbulent layer soon develops. For weak lateral fronts, turbulent convection results in a nearly homogeneous mixed layer (ML) whose depth grows in time. For strong fronts, a turbulent layer develops, but this layer is not an ML in the traditional sense because it is characterized by persistent horizontal and vertical gradients in density. The turbulent layer is, however, nearly homogeneous in potential vorticity (PV), with a value near zero. Using the PV budget, a scaling for the depth of the turbulent low PV layer and its time dependence is derived that compares well with numerical simulations. Two dynamical regimes are identified. In a convective layer near the surface, turbulence is generated by the buoyancy loss at the surface; below this layer, turbulence is generated by a symmetric instability of the lateral density gradient. This work extends classical scalings for the depth of turbulent boundary layers to account for the ubiquitous presence of lateral density gradients in the ocean. The new results indicate that a lateral density gradient, in addition to the surface forcing, can affect the stratification and the rate of growth of the surface boundary layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.