The diagnosis of ITP is based on a platelet count < 100 × 109 L−1 and exclusion of other causes. There are no standard tests or biomarkers to diagnose ITP. The sensitivity of platelet autoantibody testing is low (53%). The specificity is high (> 90%). A positive autoantibody test can be useful to rule in ITP but a negative does not rule out ITP. Summary BackgroundImmune thrombocytopenia (ITP) is an autoimmune disorder characterized by a low platelet count and an increased risk of bleeding. The sensitivity and specificity of platelet autoantibody tests is variable and their utility is uncertain. ObjectiveThe purpose of this study was to perform a systematic review and meta‐analysis of platelet autoantibody tests in the diagnosis of ITP. MethodsOvid Medline, PubMed, and Web of Science were searched from inception until 31 May 2018. Two reviewers independently assessed studies for eligibility and extracted data. Studies that reported testing results for antiplatelet autoantibodies on platelets (direct tests) or in plasma/serum (indirect tests) for 20 or more ITP patients were included. ResultsPooled estimates for sensitivity and specificity were calculated using a random effects model. Pooled estimates for the sensitivity and specificity of direct anti‐platelet autoantibody testing for either anti‐glycoprotein IIbIIIa or anti‐glycoprotein IbIX were 53% (95% confidence interval [CI], 44–61%) and 93% (95% CI, 81–99%), respectively. For indirect testing, the pooled estimates for the sensitivity and specificity were 18% (95% CI, 12–24%) and 96% (95% CI, 87–100%), respectively. ConclusionsAutoantibody testing in ITP patients has a high specificity but low sensitivity. A positive autoantibody test can be useful for ruling in ITP, but a negative test does not rule out ITP.
In this report, we will review the various clinical and laboratory approaches to diagnosing immune thrombocytopenia (ITP), with a focus on its laboratory diagnosis. We will also summarize the results from a number of laboratories that have applied techniques to detect anti-platelet autoantibodies as diagnostic tests for ITP. Although there is considerable variability in methods among laboratories, there is general agreement that platelet autoantibody testing has a high specificity but low sensitivity. This suggests several possibilities: (1) the ideal test for ITP has yet to be developed, (2) current test methods need to be improved, or (3) ITP is the clinical expression of a variety of thrombocytopenic disorders with different underlying mechanisms. Even the clinical diagnosis of ITP is complex, and experienced clinicians do not always agree on whether a particular patient has ITP. Improvements in the diagnostic approach to ITP are necessary to improve the management of this disorder.
Rituximab is an effective therapy resulting in a platelet count improvement in 60% of patients with immune thrombocytopenia (ITP). Rituximab depletes B cells; thus, a reduction in platelet autoantibody levels would be anticipated in patients who achieve a clinical response to this treatment. The objectives of this study were to determine whether rituximab was associated with a reduction in platelet autoantibody levels, and to correlate the loss of autoantibodies with the achievement of a treatment response. We performed a case-control study nested within a previous randomized controlled trial of standard therapy plus adjuvant rituximab or placebo. We measured platelet-bound anti-glycoprotein (GP) IIbIIIa and anti-GPIbIX using the antigen capture test. Of 55 evaluable patients, 25 (45%) had a detectable platelet autoantibody at baseline. Rituximab was associated with a significant reduction in anti-GPIIbIIIa levels (P = 0·02) but not anti-GPIbIX levels (P = 0·51) compared with placebo. Neither the presence of an autoantibody at baseline nor the loss of the autoantibody after treatment was associated with a response to rituximab. The subset of patients with persistent autoantibodies after treatment failed to achieve a platelet count response, suggesting that persistence of platelet autoantibodies can be a marker of disease severity.
The mechanisms of platelet underproduction in immune thrombocytopenia (ITP) remain unknown. While the number of megakaryocytes is normal or increased in ITP bone marrow, further studies of megakaryocyte integrity are needed. Megakaryocytes are responsible for the production of platelets in the bone marrow, and they are possible targets of immune-mediated injury in ITP. Since the biological process of megakaryocyte apoptosis impacts platelet production, we investigated megakaryocyte DNA fragmentation as a marker of apoptosis from ITP bone marrow biopsies. Archived bone marrow biopsy specimens from ITP patients, bone marrow specimens from controls with normal platelet counts, and bone marrow specimens from thrombocytopenic controls with myelodysplastic syndrome (MDS) were evaluated. Sections were stained with anti-CD61 for megakaryocyte enumeration, and terminal deoxynucleotidyl transferase dUTP nick-end labeling was used as an apoptotic indicator. In ITP patients, megakaryocyte apoptosis was reduced compared to nonthrombocytopenic controls. Megakaryocyte apoptosis was similarly reduced in thrombocytopenic patients with MDS. These results suggest a link between megakaryocyte apoptosis and platelet production.
Novelty Statements: This paper provides an up-to-date review of the studies that investigated CD8 + T cells in immune thrombocytopenia. This paper suggests that future studies should focus on platelet-specific CD8 + T cells to improve our understanding of the mechanisms of ITP. This paper provides an overview of laboratory methods that can be used to detect antigen-specific CD8 + T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.