An implantable rotary blood pump was developed to provide long-term mechanical right heart support for patients who have failing Fontan circulation. The objective of this study was to evaluate the pump in vivo in a 30 day sheep study. Pump speed was set at 3,900 rpm for the duration of the study, and pump power was between 4.3 and 4.6 W. The pump inlet pressures for the superior vena cava (SVC) and inferior vena cava (IVC) were 14 ± 15 and 11 ± 15 mm Hg, respectively, over the duration of the study. Hematocrit remained stable at 30% ± 4%. Partial thromboplastin time (PTT) steadily increased from 30 s preoperatively to a high of 59 s on postoperative day 20, while prothrombin time (PT) remained at 20 ± 2 s for the duration of the study. The implantation and postoperative recovery were successful, and the animal demonstrated normal physiologic pulmonary and venous pressures and cardiac output. On pump inspection, the IVC and SVC inlets were completely clear of any deposits, but there were small thrombi (approximately 0.5 mm diameter) between each of the three rotor blades and along 20% of the parting line of the two volute halves. A complete right heart bypass was performed, postoperative recovery was successful, and the pump demonstrated adequate circulatory support and normal physiologic pulmonary and venous pressures. This study was the first successful test of a right heart replacement device in a chronic animal study.
The objective of this investigation was to compare pulsatile versus nonpulsatile perfusion modes in terms of surplus hemodynamic energy (SHE) levels during cardiopulmonary bypass (CPB) in a simulated neonatal model. The extracorporeal circuit consisted of a Jostra HL-20 heart-lung machine (for both pulsatile and nonpulsatile modes of perfusion), a Capiox Baby RX hollow-fiber membrane oxygenator, a Capiox pediatric arterial filter, 5 feet of arterial tubing and 6 feet of venous tubing with a quarter-inch diameter. The circuit was primed with a lactated Ringers solution. The systemic resistance of a pseudo-patient (mean weight, 3 kg) was simulated by placing a clamp at the end of the arterial line. The pseudo-patient was subjected to five pump flow rates in the 400 to 800 ml/min range. During pulsatile perfusion, the pump rate was kept constant at 120 bpm. Pressure waveforms were recorded at the preoxygenator, postoxygenator, and preaortic cannula sites. SHE was calculated by use of the following formula {SHE (ergs/cm) = 1,332 [((integral fpdt) / (integral fdt)) - Mean Arterial Pressure]} (f = pump flow and p = pressure). A total of 60 experiments were performed (n = 6 for nonpulsatile and n = 6 for pulsatile) at each of the five flow rates. A linear mixed-effects model, which accounts for the correlation among repeated measurements, was fit to the data to assess differences in SHE between flows, pumps, and sites. The Tukey multiple comparison procedure was used to adjust p values for post hoc pairwise comparisons. With a pump flow rate of 400 ml/min, pulsatile flow generated significantly higher surplus hemodynamic energy levels at the preoxygenator site (23,421 +/- 2,068 ergs/cm vs. 4,154 +/- 331 ergs/cm, p < 0.0001), the postoxygenator site (18,784 +/- 1,557 ergs/cm vs. 3,383 +/- 317 ergs/cm, p < 0.0001), and the precannula site (6,324 +/- 772 ergs/cm vs. 1,320 +/- 91 ergs/cm, p < 0.0001), compared with the nonpulsatile group. Pulsatile flow produced higher SHE levels at all other pump flow rates. The Jostra HL-20 roller pump generated significantly higher SHE levels in the pulsatile mode when compared with the nonpulsatile mode at all five pump flow rates.
Unreliable quantification of flow pulsatility has hampered many efforts to assess the importance of pulsatile perfusion. Generation of pulsatile flow depends upon an energy gradient. It is necessary to quantify pressure flow waveforms in terms of hemodynamic energy levels to make a valid comparison between perfusion modes during chronic support. The objective of this study was to quantify pressure flow waveforms in terms of energy equivalent pressure (EEP) and surplus hemodynamic energy (SHE) levels in an adult mock loop using a pulsatile ventricle assist system (VAD). A 70 cc Pierce-Donachy pneumatic pulsatile VAD was used with a Penn State adult mock loop. The pump flow rate was kept constant at 5 L/min with pump rates of 70 and 80 bpm and mean aortic pressures (MAP) of 80, 90, and 100 mm Hg, respectively. Pump flows were adjusted by varying the systolic pressure, systolic duration, and the diastolic vacuum of the pneumatic drive unit. The aortic pressure was adjusted by varying the systemic resistance of the mock loop EEP (mm Hg) = (integral of fpdf)/(integral of fdt) SHE (ergs/cm3) = 1,332 [((integral of fpdt)/(integral of fdt))--MAP] were calculated at each experimental stage. The difference between the EEP and the MAP is the extra energy generated by this device. This difference is approximately 10% in a normal human heart. The EEP levels were 88.3 +/- 0.9 mm Hg, 98.1 +/- 1.3 mm Hg, and 107.4 +/- 1.0 mm Hg with a pump rate of 70 bpm and an aortic pressure of 80 mm Hg, 90 mm Hg, and 100 mm Hg, respectively. Surplus hemodynamic energy in terms of ergs/cm3 was 11,039 +/- 1,236 ergs/cm3, 10,839 +/- 1,659 ergs/cm3, and 9,857 +/- 1,289 ergs/cm3, respectively. The percentage change from the mean aortic pressure to EEP was 10.4 +/- 1.2%, 9.0 +/- 1.4%, and 7.4 +/- 1.0% at the same experimental stages. Similar results were obtained when the pump rate was changed from 70 bpm to 80 bpm. The EEP and SHE formulas are adequate to quantify different levels of pulsatility for direct and meaningful comparisons. This particular pulsatile VAD system produces near physiologic hemodynamic energy levels at each experimental stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.