To disperse between isolated waterbodies, freshwater organisms must often cross terrestrial barriers and many freshwater animals that are incapable of flight must rely on transport via flooding events, other animals or anthropogenic activity. Decapods such as crayfish, on the other hand, can disperse to nearby waterbodies by walking on land, a behaviour that has facilitated the spread of invasive species. Overland movement could play a key role in the management of non-native crayfish, though to what extent terrestrial emigration occurs in different species is poorly understood. Here, we directly compared the terrestrial emigration tendency of two non-native crayfish species in Great Britain; red swamp (Procambarus clarkii) and signal (Pacifastacus leniusculus) crayfish. We found that both species emigrated from the water and that there was no significant difference in terms of their terrestrial emigration tendency, suggesting that there is a risk both of these species will migrate overland and disperse to new habitats. This study shows that terrestrial emigration is an important behavioural trait to consider when preventing the escape of crayfish from aquaculture and further spread of invasive species.
The spread of invasive, non-native species is a key threat to biodiversity. Parasites can play a significant role by influencing their invasive host's survival or behaviour, which can subsequently alter invasion dynamics. The North American signal crayfish (Pacifastacus leniusculus) is a known carrier of Aphanomyces astaci, an oomycete pathogen that is the causative agent of crayfish plague and fatal to European crayfish species, whereas North American species are considered to be largely resistant. There is some evidence, however, that North American species, can also succumb to crayfish plague, though how A. astaci affects such ‘reservoir hosts’ is rarely considered. Here, we tested the impact of A. astaci infection on signal crayfish, by assessing juvenile survival and adult behaviour following exposure to A. astaci zoospores. Juvenile signal crayfish suffered high mortality 4-weeks post-hatching, but not as older juveniles. Furthermore, adult signal crayfish with high-infection levels displayed altered behaviours, being less likely to leave the water, explore terrestrial areas and exhibit escape responses. Overall, we reveal that A. astaci infection affects signal crayfish to a much greater extent than previously considered, which may not only have direct consequences for invasions, but could substantially affect commercially harvested signal crayfish stocks worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.