Our current view of cellular membranes centers on the fluid-mosaic model, which envisions the cellular membrane as a "liquidlike" bilayer of lipids, cholesterol, and proteins that freely diffuse in two dimensions. In stark contrast, the exchange of materials between the leaflets of a bilayer was presumed to be prohibited by the large enthalpic barrier associated with translocating hydrophilic materials, such as a charged lipid headgroup, through the hydrophobic membrane core. This static picture with regard to lipid translocation (or "flip-flop" as it is affectionately known) has been a long-held belief in the study of membrane dynamics. The current accepted membrane model invokes specific protein flippase (inward moving), floppase (outward moving), and scramblase (bidirectional) enzymes that assist in the movement of lipids between the leaflets of cellular membranes. The low rate of protein-free lipid flip-flop has also been a cornerstone of our understanding of the bilateral organization of cellular membrane components, specifically the asymmetric distribution of lipid species found in the luminal and extracellular leaflets of the plasma membrane of eukaryotic cells. Much of the previous work contributing to our current understanding of lipid flip-flop has utilized fluorescent- or spin-labeled lipids. However, there is growing evidence that these lipid probes do not accurately convey the dynamics and thermodynamics of native (unlabeled) lipid motion. This Account summarizes our research efforts directed toward developing a deep physical and chemical understanding of protein-free lipid flip-flop in phospholipid membrane models using sum-frequency vibrational spectroscopy (SFVS). Our use of SFVS enables the direct measurement of native lipid flip-flop in model membranes. In particular, we have explored the kinetic rates and activation thermodynamics of lipid translocation as a means of deciphering the underlying chemical and physical directors governing this process. By means of transition state theory, the contributions from enthalpy and entropy on the activation energy barrier to lipid flip-flop have been explored in detail for a variety of lipid species and membrane compositions. Specifically, the effect of lipid structure and packing and the inclusion of cholesterol and transmembrane peptides on the rates and thermodynamics of lipid translocation have been investigated in detail. It is our hope that these studies will provide a new perspective on lipid translocation in biological membranes and the role of lipid flip-flop in generating and maintaining cell membrane lipid asymmetry.
The unique structure of cholesterol and its role in modulating lipid translocation (flip-flop) were examined using sum-frequency vibrational spectroscopy (SFVS). Two structural analogues of cholesterol--cholestanol and cholestene--were examined to explore the influence of ring rigidity and amphiphilicity on controlling distearoylphosphocholine (DSPC) flip-flop. Kinetic rates for DSPC flip-flop were determined as a function of sterol concentration and temperature. All three sterols increased the rate of DSPC flip-flop in a concentration-dependent manner following the order cholestene > cholestanol > cholesterol. Rates of DSPC flip-flop were used to calculate the thermodynamic activation free energy barrier (ΔG(‡)) in the presence of cholesterol, cholestanol, and cholestene. The acyl chain gauche content of DSPC, mean lipid area, and membrane compressibility were correlated to observed trends in ΔG(‡). ΔG(‡) for DSPC flip-flop showed a strong positive correlation with the molar compression modulus (K*) of the membrane, influenced by the type and concentration of the sterol added. Interestingly, cholesterol is distinctive in maintaining invariant membrane compressibility over the range of 2-10 mol %. The results in this study demonstrate that the compression modulus of a membrane plays a significant role in moderating ΔG(‡) and the kinetics of native, protein-free, lipid translocation in membranes.
RuO2 conductive thin films were synthesized using the sol-gel method and deposited onto transparent insulating substrates. The optical transmission, film thickness, surface morphology and composition, resistivity, and spectroelectrochemical performance have been characterized. The optical transmission values of these films ranged from 70 to 89% in the visible region and from 56 to 88% in the infrared region. Resistivity values of the RuO2 sol-gel films varied from 1.02 × 10(-3) to 1.13 Ω cm and are highly dependent on the initial solution concentration of RuO2 in the sol-gel. The RuO2 sol-gel films were used as electrodes for the electrochemical oxidation and reduction of ferrocenemethanol. The electrochemical behavior of our novel RuO2 sol-gel films was compared to that of a standard platinum disk electrode and showed no appreciable differences in the half-wave potential (E1/2). The mechanical and chemical stability of the coatings was tested by physical abrasion and exposure to highly acidic, oxidizing Piranha solution. Repeated exposure to these extreme conditions did not result in any appreciable decline in electrochemical performance. Finally, the use of the novel RuO2 sol-gel conductive and transparent films was demonstrated in a spectroelectrochemistry experiment in which the oxidation and reduction of ferrocenemethanol was monitored via UV-vis spectroscopy as the applied potential was cycled.
Many cells, such as leukocytes, endothelial cells, and osteoblasts, exhibit dramatic biochemical and biophysical responses to shear flow. However,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.