SummaryClearance of misfolded and aggregated proteins is central to cell survival. Here, we describe a new pathway for maintaining protein homeostasis mediated by the proteasome shuttle factor UBQLN2. The 26S proteasome degrades polyubiquitylated substrates by recognizing them through stoichiometrically bound ubiquitin receptors, but substrates are also delivered by reversibly bound shuttles. We aimed to determine why these parallel delivery mechanisms exist and found that UBQLN2 acts with the HSP70-HSP110 disaggregase machinery to clear protein aggregates via the 26S proteasome. UBQLN2 recognizes client-bound HSP70 and links it to the proteasome to allow for the degradation of aggregated and misfolded proteins. We further show that this process is active in the cell nucleus, where another system for aggregate clearance, autophagy, does not act. Finally, we found that mutations in UBQLN2, which lead to neurodegeneration in humans, are defective in chaperone binding, impair aggregate clearance, and cause cognitive deficits in mice.
Protein misfolding and aggregation are associated with many neurodegenerative diseases, including Huntington’s disease. The cellular machinery for maintaining proteostasis includes molecular chaperones that facilitate protein folding and reduce proteotoxicity. Increasing the protein folding capacity of cells through manipulation of DNAJ chaperones has been shown to suppress aggregation and ameliorate polyglutamine toxicity in cells and flies. However, to date these promising findings have not been translated to mammalian models of disease. To address this issue, we developed transgenic mice that over-express the neuronal chaperone HSJ1a (DNAJB2a) and crossed them with the R6/2 mouse model of Huntington’s disease. Over-expression of HSJ1a significantly reduced mutant huntingtin aggregation and enhanced solubility. Surprisingly, this was mediated through specific association with K63 ubiquitylated, detergent insoluble, higher order mutant huntingtin assemblies that decreased their ability to nucleate further aggregation. This was dependent on HSJ1a client binding ability, ubiquitin interaction and functional co-operation with HSP70. Importantly, these changes in mutant huntingtin solubility and aggregation led to improved neurological performance in R6/2 mice. These data reveal that prevention of further aggregation of detergent insoluble mutant huntingtin is an additional level of quality control for late stage chaperone-mediated neuroprotection. Furthermore, our findings represent an important proof of principle that DNAJ manipulation is a valid therapeutic approach for intervention in Huntington’s disease.
Huntington's disease (HD) is one of a group of neurodegenerative disorders caused by the pathological expansion of a glutamine tract. A hallmark of these so-called polyglutamine diseases is the presence of ubiquitylated inclusion bodies, which sequester various components of the 19S and 20S proteasomes. In addition, the ubiquitin-proteasome system (UPS) has been shown to be severely impaired in vitro in cells overexpressing mutant huntingtin. Thus, because of its fundamental housekeeping function, impairment of the UPS in neurons could contribute to neurotoxicity. We have recently proposed that the proteasome activator REGgamma could contribute to UPS impairment in polyglutamine diseases by suppressing the proteasomal catalytic sites responsible for cleaving Gln-Gln bonds. Capping of proteasomes with REGgamma could therefore contribute to a potential 'clogging' of the proteasome by pathogenic polyglutamines. We show here that genetic reduction of REGgamma has no effect on the well-defined neurological phenotype of R6/2 HD mice and does not affect inclusion body formation in the R6/2 brain. Surprisingly, we observe increased proteasomal 'chymotrypsin-like' activity in 13-week-old R6/2 brains relative to non-R6/2, irrespective of REGgamma levels. However, assays of 26S proteasome activity in mouse brain extracts reveal no difference in proteolytic activity regardless of R6/2 or REGgamma genotype. These findings suggest that REGgamma is not a viable therapeutic target in polyglutamine disease and that overall proteasome function is not impaired by trapped mutant polyglutamine in R6/2 mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.