The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn3N4 under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue‐shift spanning the entire visible spectrum. The pressure‐mediated band gap opening is general to this material across numerous high‐density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure‐tuneable electronic properties for future applications.
The transparent conducting oxide, SnO2, is a promising optoelectronic material with predicted tailorable properties via pressure‐mediated band gap opening. While such electronic properties are typically modeled assuming perfect crystallinity, disordering of the O sublattice under pressure is qualitatively known. Here a quantitative approach is thus employed, combining extended X‐ray absorption fine‐structure (EXAFS) spectroscopy with X‐ray diffraction, to probe the extent of Sn—O bond anharmonicities in the high‐pressure cubic () SnO2 – formed as a single phase and annealed by CO2 laser heating to 2648 ± 41 K at 44.5 GPa. This combinational study reveals and quantifies a large degree of disordering in the O sublattice, while the Sn lattice remains ordered. Moreover, this study describes implementation of direct laser heating of non‐metallic samples by CO2 laser alongside EXAFS, and the high quality of data which may be achieved at high pressures in a diamond anvil cell when appropriate thermal annealing is applied.
The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high‐pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn3N4 under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue‐shift spanning the entire visible spectrum. The pressure‐mediated band gap opening is general to this material across numerous high‐density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure‐tuneable electronic properties for future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.