Nanocrystalline Ni 0.5 Zn 0.5 Fe 2 O 4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.
A THz wire grid polarizer is simulated and demonstrated consisting of 40-μm periodic aluminum strips mounted on a polycarbonate substrate with a variable metal-to-gap ratio. Full-wave numerical simulations were performed from 100 GHz to 550 GHz predicting that the transmission in perpendicular (parallel) polarization is much higher (lower) than that predicted by geometric optics, leading to a very high extinction ratio of ∼60 dB between 100 and 550 GHz when the gaps become very small (<5 μm). This behavior is confirmed qualitatively in experiments between 100 and 530 GHz where extinction ratios exceeding 40 dB are achieved. These results are explained physically as an electromagnetic concentration effect in the gaps consistent with plasmonic-like behavior. The effect depends critically on gap width and weakly on frequency.
Scandium nitride (ScN) is a degenerate n-type semiconductor with very high carrier concentrations, low resistivity, and carrier mobilities comparable to those of transparent conducting oxides such as zinc oxide. Because of its small lattice mismatch to gallium nitride (GaN), <1%, ScN is considered a very promising material for future GaN based electronics. Impurities are the source of the degeneracy. Yet, which specific impurities are the cause has remained in contention. ScN thin films of various thicknesses were grown on magnesium oxide substrates in a (001) orientation using reactive magnetron sputtering across a range of deposition conditions. X-ray diffraction was used to verify crystal orientation. Film thicknesses ranging from 39 to 85 nm were measured using scanning electron microscopy. The electronic transport properties of the films were characterized using Hall-effect measurements at temperatures ranging from 10 to 320 K. At 10 K, the electron concentration varies from 4.4 × 1020 to 1.5 × 1021 cm−3, resistivity from 2.1 × 10−4 to 5.0 × 10−5 Ω·cm, and Hall mobility from 66 to 97 cm2/V·s. Secondary ion mass spectroscopy (SIMS) was used to determine film compositions. Finally, density functional theory (DFT) was used to compute the activation energies for various point defects including nitrogen and scandium vacancies and oxygen and fluorine substituting for nitrogen. For both oxygen and fluorine substitution, the energies were negative, indicating spontaneous formation. Nevertheless, the combined results of the Hall, SIMS, and DFT strongly suggest that oxygen substitution is the primary mechanism behind the high carrier concentration in these samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.