Diamond as a high performance material occupies a special place due to its in many ways extreme properties, e.g., hardness, chemical inertness, thermal conductivity, optical properties, and electric characteristics. Work mainly over the last decade has shown that diamond also occupies a special place as an electrode material with interesting applications in electroanalysis. When made sufficiently electrically conducting for example by boron-doping, −thin film× and −free ± standing× diamond electrodes exhibit remarkable chemical resistance to etching, a wide potential window, low background current responses, mechanical stability towards ultrasound induced interfacial cavitation, a low −stickiness× in adsorption processes, and a high degree of −tunability× of the surface properties. This review summarizes some of the recent work aimed at applying conductive (boron-doped) diamond electrodes to improve procedures in electroanalysis.
There has been an intense research to develop 2-H MoS2 based catalysts to reduce or eliminate the use of Pt/C at higher metal loading for hydrogen evolution reaction (HER) in catalytic hydrolysis of water, which enables the capture of renewable energy sources as fuel and chemical. However, the study of its uncommon polymorph, 1T-MoS2 and particularly the doping effect with transition metal (TM) is rather limited due to the instability of this phase. Here we report a simple ambient temperature modification method using sonication to dope the single layer 1T-S MoS2 with various TM precursors. It is found that 1-T S MoS2 is more superior than corresponding 2H-S MoS2 and the inclusion of 3 wt% Pt or Pd can also further enhance the HER activity. STEM-EELS and XAS show the active single TM atom doping on this surface is to account for the high activity. Kinetic and DFT analyses also illustrate that the metallic nature of 1T-S MoS2 greatly facilitates the first proton reduction step from water, rendering it non-rate limiting as contrast to that of 2H-S MoS2. The inclusion of TM single doper such as Pd, despite at low loading, can offer the dramatic acceleration on the rate limiting recombination of H to H2. As a result, a bifunctional catalysis for HER over this tailored composite structure is demonstrated which outperforms most reported catalysts in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.