The number and size of tiger populations continue to decline owing to habitat loss, habitat fragmentation and poaching of tigers and their prey. As a result, tiger populations have become small and highly structured. Current populations have been isolated since the early 1970s or for approximately seven generations. The objective of this study is to explore how inbreeding may be affecting the persistence of remaining tiger populations and how dispersal, either natural or artificial, may reduce the potentially detrimental effect of inbreeding depression. We developed a tiger simulation model and used published levels of genetic load in mammals to simulate inbreeding depression. Following a 50 year period of population isolation, we introduced one to four dispersing male tigers per generation to explore how gene flow from nearby populations may reduce the negative impact of inbreeding depression. For the smallest populations, even four dispersing male tigers per generation did not increase population viability, and the likelihood of extinction is more than 90% within 30 years. Unless habitat connectivity is restored or animals are artificially introduced in the next 70 years, medium size wild populations are also likely to go extinct, with only four to five of the largest wild tiger populations likely to remain extant in this same period without intervention. To reduce the risk of local extinction, habitat connectivity must be pursued concurrently with efforts to increase population size (e.g. enhance habitat quality, increase habitat availability). It is critical that infrastructure development, dam construction and other similar projects are planned appropriately so that they do not erode the extent or quality of habitat for these populations so that they can truly serve as future source populations.
Poaching tigers, primarily for their bones, has become the latest threat to the persistence of wild tiger populations throughout the world. Anecdotal information indicates the seriousness of this new threat. It is important, however, to provide a quantitative analysis of poaching as a basis for strong policy action. We therefore created a tiger simulation model to explore the effects of realistic levels of poaching on population viability. The model is an individually based, stochastic spatial model that is based on the extensive data set from Royal Chitwan National Park, Nepal. We found that as poaching continues over time, the probability of population extinction increases sigmoidally; a critical zone exists in which a small, incremental increase in poaching greatly increases the probability of extinction. The implication is that poaching may not at first be seen as a threat but could suddenly become one. Moreover, even if poaching is effectively stopped, tiger populations will still be vulnerable and could go extinct due to demographic and environmental stochasticity. Our model also shows that poaching reduces genetic variability, which could further reduce population viability due to inbreeding depression. The longer poaching is allowed to continue, the more vulnerable a population will be to these stochastic events. At currently reported rates of poaching our analysis indicates that many wild tiger populations will be extirpated during the latter half of the 1990s. Los efectos a largo plazo de la caza furtiva de tigres sobre la viabilidad poblacional
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.