Bispecific antibodies have been extensively studied in vitro and in vivo for their use in redirected tumor cell lysis. A particular challenge of bispecific antibody constructs that recognize the invariant CD3 signaling complex is a controlled polyclonal activation of T cells that, ideally, is exquisitely dependent on the presence of target cells. Otherwise, overt production of inflammatory cytokines and secondary reactions may occur as side effects, as can be observed with constitutively T-cell activating monoclonal antibodies to CD3 or CD28, and with bispecific antibodies bearing Fc gamma portions. Here we analyzed 2 distinct bispecific single-chain antibody constructs of the BiTE class, called MT110 and MT103 (or MEDI-538), for conditional T-cell activation. In the presence of target-expressing cell lines, low picomolar concentrations of the BiTE molecules were sufficient to stimulate a high percentage of peripheral human T cells to express cytokines and surface activation markers, enter into cell cycle, and induce redirected lysis of target cells. However, in the absence of target cells, the 2 BiTE molecules even at high concentrations did not detectably activate T cells. Our data show that T cell activation by monomeric forms of MT110 and MT103 is highly conditional in that it is strictly dependent on the presence of cells expressing the proper target antigen. BiTE molecules therefore qualify for a highly controlled polyclonal T-cell therapy of cancer.
To assess the impacts of different types of human activity on the development of resistant bacteria in the feces of wild small mammals, we compared the prevalences and patterns of antimicrobial resistance and resistance genes in generic Escherichia coli and Salmonella enterica isolates from fecal samples collected from wild small mammals living in four environments: swine farms, residential areas, landfills, and natural habitats. Resistance to antimicrobials was observed in E. coli isolates from animals in all environments: 25/52 (48%) animals trapped at swine farms, 6/69 (9%) animals trapped in residential areas, 3/20 (15%) animals trapped at landfills, and 1/22 (5%) animals trapped in natural habitats. Animals trapped on farms were significantly more likely to carry E. coli isolates with resistance to tetracycline, ampicillin, sulfisoxazole, and streptomycin than animals trapped in residential areas. The resistance genes sul2, aadA, and tet(A) were significantly more likely to be detected in E. coli isolates from animals trapped on farms than from those trapped in residential areas. Three S. enterica serotypes (Give, Typhimurium, and Newport) were recovered from the feces of 4/302 (1%) wild small mammals. All Salmonella isolates were pansusceptible. Our results show that swine farm origin is significantly associated with the presence of resistant bacteria and resistance genes in wild small mammals in southern Ontario, Canada. However, resistant fecal bacteria were found in small mammals living in all environments studied, indicating that environmental exposure to antimicrobials, antimicrobial residues, resistant bacteria, or resistance genes is widespread.
BackgroundEpithelial cell adhesion molecule (EpCAM) is frequently and highly expressed on human carcinomas. The emerging role of EpCAM as a signalling receptor and activator of the wnt pathway, and its expression on tumor-initiating cells, further add to its attractiveness as target for immunotherapy of cancer. Thus far, five conventional monoclonal IgG antibodies have been tested in cancer patients. These are murine IgG2a edrecolomab and its murine/human chimeric IgG1 antibody version, and humanized, human-engineered and fully human IgG1 antibodies 3622W94, ING-1, and adecatumumab (MT201), respectively. Here we compared all anti-EpCAM antibodies in an attempt to explain differences in clinical activity and safety.MethodsWe recombinantly produced all antibodies but murine edrecolomab and investigated them for binding affinity, EpCAM epitope recognition, ADCC and CDC, and inhibition of breast cancer cell proliferation.ResultsING-1 and 3622W94 bound to EpCAM with much higher affinity than adecatumumab and edrecolomab. Edrecolomab, ING-1, and 3622W94 all recognized epitopes in the exon 2-encoded N-terminal domain of EpCAM, while adecatumumab recognized a more membrane proximal epitope encoded by exon 5. All antibodies induced lysis of EpCAM-expressing cancer cell lines by both ADCC and CDC with potencies that correlated with their binding affinities. The chimeric version of edrecolomab with a human Fcγ1 domain was much more potent in ADCC than the murine IgG2a version. Only adecatumumab showed a significant inhibition of MCF-7 breast cancer cell proliferation in the absence of complement and immune cells.ConclusionA moderate binding affinity and recognition of a distinct domain of EpCAM may best explain why adecatumumab showed a larger therapeutic window in cancer patients than the two high-affinity IgG1 antibodies ING-1 and 3622W94, both of which caused acute pancreatitis.
A syndrome affecting cultured chinook salmon, Oncorhynchus tshawytscha (Walbaum), characterized by distended abdomens, gastric dilation, air sacculitis (GDAS), increased feed conversion rates and increased mortality has been recognized in New Zealand. Affected fish were most obvious in sea cages but were also present in fresh water. Mortality rates associated with this condition were highest in late summer and approached 6% per month. A dilated and flaccid stomach, without visible rugal folds containing copious oil, watery fluid or undigested feed was typical. Gastric mucosal ulceration or inflammation were not present. The air sacculitis consisted of a thickened, dilated bladder with a mixed mucosal inflammatory infiltrate and a luminal exudate associated with large numbers of morphologically diverse bacteria. Gastric dilation or air sacculitis occurred alone or together in the same fish. In a group of 20 subclinically affected fish with or without gastric dilation, there were no significant differences in weight, length, serum osmolality, sodium, total protein or packed cell volume. Twenty‐three severely affected fish had significantly (P < 0.05) higher serum osmolality but similar sodium and total protein to that of clinically normal fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.