SummaryCellular life emerged ~3.7 billion years ago. With scant exception, terrestrial organisms have evolved under predictable daily cycles due to the Earth’s rotation. The advantage conferred upon organisms that anticipate such environmental cycles has driven the evolution of endogenous circadian rhythms that tune internal physiology to external conditions. The molecular phylogeny of mechanisms driving these rhythms has been difficult to dissect because identified clock genes and proteins are not conserved across the domains of life: Bacteria, Archaea and Eukaryota. Here we show that oxidation-reduction cycles of peroxiredoxin proteins constitute a universal marker for circadian rhythms in all domains of life, by characterising their oscillations in a variety of model organisms. Furthermore, we explore the interconnectivity between these metabolic cycles and transcription-translation feedback loops of the clockwork in each system. Our results suggest an intimate co-evolution of cellular time-keeping with redox homeostatic mechanisms following the Great Oxidation Event ~2.5 billion years ago.
SummaryCircadian (~24 hour) clocks are fundamentally important for coordinated physiology in organisms as diverse as cyanobacteria and humans. All current models of the clockwork in eukaryotic cells are based on transcription-translation feedback loops. Non-transcriptional mechanisms in the clockwork have been difficult to study in mammalian systems. We circumvented these problems by developing novel assays using human red blood cells (RBCs), which have no nucleus (or DNA), and therefore cannot perform transcription. Our results show that transcription is, in fact, not required for circadian oscillations in humans, and that non-transcriptional events appear sufficient to sustain cellular circadian rhythms. Using RBCs, we found that peroxiredoxins, highly conserved antioxidant proteins, undergo ~24 hour redox cycles, which persist for many days under constant conditions (i.e. in the absence of external cues). Moreover, these rhythms are entrainable (i.e. tunable by environmental stimuli), and temperature-compensated, both key features of circadian rhythms. We anticipate our findings will facilitate more sophisticated cellular clock models, highlighting the interdependency of transcriptional and non-transcriptional oscillations in potentially all eukaryotic cells.
Circadian rhythms are essential to health. Their disruption is associated with metabolic diseases in experimental animals and man. Local metabolic rhythms represent an output of tissue-based circadian clocks. Attempts to define how local metabolism is temporally coordinated have focused on gene expression by defining extensive and divergent "circadian transcriptomes" involving 5%-10% of genes assayed. These analyses are inevitably incomplete, not least because metabolic coordination depends ultimately upon temporal regulation of proteins. We therefore conducted a systematic analysis of a mammalian "circadian proteome." Our analysis revealed that up to 20% of soluble proteins assayed in mouse liver are subject to circadian control. Many of these circadian proteins are novel and cluster into discrete phase groups so that the liver's enzymatic profile contrasts dramatically between day and night. Unexpectedly, almost half of the cycling proteins lack a corresponding cycling transcript, as determined by quantitative PCR, microarray, or both and revealing for the first time the extent of posttranscriptional mechanisms as circadian control points. The circadian proteome includes rate-limiting factors in vital pathways, including urea formation and sugar metabolism. These findings provide a new perspective on the extensive contribution of circadian programming to hepatic physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.