Patterns of divergence and polymorphism across hybrid zones can provide important clues as to their origin and maintenance. Unimodal hybrid zones or hybrid swarms are composed predominantly of recombinant individuals whose genomes are patchworks of alleles derived from each parental lineage. In contrast, bimodal hybrid zones contain few identifiable hybrids; most individuals fall within distinct genetic clusters. Distinguishing between hybrid swarms and bimodal hybrid zones can be important for taxonomic and conservation decisions regarding the status and value of hybrid populations. In addition, the causes of bimodality are important in understanding the generation and maintenance of biological diversity. For example, are distinct clusters mostly reproductively isolated and co-adapted gene complexes, or can distinctiveness be maintained by a few 'genomic islands' despite rampant gene flow across much of the genome? Here we focus on three patterns of distinctiveness in the face of gene flow between gartersnake taxa in the Great Lakes region of North America. Bimodality, the persistence of distinct clusters of genotypes, requires strong barriers to gene flow and supports recognition of distinct specialist (Thamnophis butleri) and generalist (Thamnophis radix) taxa. Concordance of DNA-based clusters with morphometrics supports the hypothesis that trophic morphology is a key component of divergence. Finally, disparity in the level of differentiation across molecular markers (amplified fragment length polymorphisms) indicates that distinctiveness is maintained by strong selection on a few traits despite high gene flow currently or in the recent past.
Hybridization occurs differentially across the genome in a balancing act between selection and migration. With the unprecedented resolution of contemporary sequencing technologies, selection and migration can now be effectively quantified such that researchers can identify genetic elements involved in introgression. Furthermore, genomic patterns can now be associated with ecologically relevant phenotypes, given availability of annotated reference genomes. We do so in North American box turtles (Terrapene) by deciphering how selection affects hybrid zones at the interface of species boundaries and identifying genetic regions potentially under selection that may relate to thermal adaptations. Such genes may impact physiological pathways involved in temperature-dependent sex determination, immune system functioning and hypoxia tolerance. We contrasted these patterns across inter-and intraspecific hybrid zones that differ temporally and biogeographically. We demonstrate hybridization is broadly apparent in Terrapene, but with observed genomic cline patterns corresponding to species boundaries at loci potentially associated with thermal adaptation. These loci display signatures of directional introgression within intraspecific boundaries, despite a genome-wide selective trend against intergrades. In contrast, outlier loci for interspecific comparisons exhibited evidence of being under selection against hybrids. Importantly, adaptations coinciding with species boundaries in Terrapene overlap with climatic boundaries and highlight the vulnerability of these terrestrial ectotherms to anthropogenic pressures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.