We investigate the effect of feature weighting on document clustering, including a novel investigation of Okapi BM25 feature weighting. Using eight document datasets and 17 well-established clustering algorithms we show that the benefit of tf-idf weighting over tf weighting is heavily dependent on both the dataset being clustered and the algorithm used. In addition, binary weighting is shown to be consistently inferior to both tf-idf weighting and tf weighting. We investigate clustering using both BM25 term saturation in isolation and BM25 term saturation with idf, confirming that both are superior to their non-BM25 counterparts under several common clustering quality measures. Finally, we investigate estimation of the k1 BM25 parameter when clustering. Our results indicate that typical values of k1 from other IR tasks are not appropriate for clustering; k1 needs to be higher.keywords Document clustering Á Feature weighting Á Okapi BM25
While supervised learning-to-rank algorithms have largely supplanted unsupervised query-document similarity measures for search, the exploration of query-document measures by many researchers over many years produced insights that might be exploited in other domains. For example, the BM25 measure substantially and consistently outperforms cosine across many tested environments, and potentially provides retrieval effectiveness approaching that of the best learning-to-rank methods over equivalent features sets. Other measures based on language modeling and divergence from randomness can outperform BM25 in some circumstances. Despite this evidence, cosine remains the prevalent method for determining inter-document similarity for clustering and other applications. However, recent research demonstrates that BM25 terms weights can significantly improve clustering. In this work, we extend that result, presenting and evaluating novel inter-document similarity measures based on BM25, language modeling, and divergence from randomness. In our first experiment we analyze the accuracy of nearest neighborhoods when using our measures. In our second experiment, we analyze using clustering algorithms in conjunction with our measures. Our novel symmetric BM25 and language modeling similarity measures outperform alternative measures in both experiments. This outcome strongly recommends the adoption of these measures, replacing cosine similarity in future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.