Summary L eucine R ich R epeat K inase 2 ( LRRK2 ) is the most commonly mutated gene in familial Parkinson’s disease (PD) 1 and is also linked to its idiopathic form 2 . LRRK2 is proposed to function in membrane trafficking 3 and co-localizes with microtubules 4 . Despite LRRK2’s fundamental importance for understanding and treating PD, there is limited structural information on it. Here we report the 3.5Å structure of the catalytic half of LRRK2, and an atomic model of microtubule-associated LRRK2 built using a reported 14Å cryo-electron tomography in situ structure 5 . We propose that the conformation of LRRK2’s kinase domain regulates its microtubule interaction, with a closed conformation favoring oligomerization on microtubules. We show that the catalytic half of LRRK2 is sufficient for filament formation and blocks the motility of the microtubule-based motors kinesin-1 and cytoplasmic dynein-1 in vitro . Kinase inhibitors that stabilize an open conformation relieve this interference and reduce LRRK2 filament formation in cells, while those that stabilize a closed conformation do not. Our findings suggest that LRRK2 can act as a roadblock for microtubule-based motors and have implications for the design of therapeutic LRRK2 kinase inhibitors.
The mechanisms that promote excitatory synapse formation and maturation have been extensively studied. However, the molecular events that limit excitatory synapse development so that synapses form at the right time and place and in the correct numbers are less well understood. We have identified a RhoA guanine nucleotide exchange factor, Ephexin5, which negatively regulates excitatory synapse development until EphrinB binding to the EphB receptor tyrosine kinase triggers Ephexin5 phosphorylation, ubiquitination, and degradation. The degradation of Ephexin5 promotes EphB-dependent excitatory synapse development and is mediated by Ube3A, a ubiquitin ligase that is mutated in the human cognitive disorder Angelman syndrome and duplicated in some forms of Autism Spectrum Disorders (ASDs). These findings suggest that aberrant EphB/Ephexin5 signaling during the development of synapses may contribute to the abnormal cognitive function that occurs in Angelman syndrome and, possibly, ASDs.
Summary Purpose The management of epilepsy in children is particularly challenging when seizures are resistant to anti-epileptic medications, or undergo many changes in seizure type over time, or have comorbid cognitive, behavioral, or motor deficits. Despite efforts to classify such epilepsies based on clinical and electroencephalographic criteria, many children never receive a definitive etiological diagnosis. Whole exome sequencing (WES) is proving to be a highly effective method for identifying de novo variants that cause neurological disorders, especially those associated with abnormal brain development. Here we explore the utility of WES for identifying candidate causal de novo variants in a cohort of children with heterogeneous sporadic epilepsies without etiological diagnoses. Methods We performed WES (mean coverage ~40X) on 10 trios comprised of unaffected parents and a child with sporadic epilepsy characterized by difficult-to-control seizures and some combination of developmental delay, epileptic encephalopathy, autistic features, cognitive impairment, or motor deficits. Sequence processing and variant calling were performed using standard bioinformatics tools. A custom filtering system was used to prioritize de novo variants of possible functional significance for validation by Sanger sequencing. Key Findings In nine of ten probands, we identified one or more de novo variants predicted to alter protein function, for a total of 15. Four probands had de novo mutations in genes previously shown to harbor heterozygous mutations in patients with severe, early-onset epilepsies (two in SCN1A, and one each in CDKL5 and EEF1A2). In three children, the de novo variants were in genes with functional roles that are plausibly relevant to epilepsy (KCNH5, CLCN4 and ARHGEF15). The variant in KCNH5 alters one of the highly conserved arginine residues of the voltage sensor of the encoded voltage-gated potassium channel. In vitro analyses using cell-based assays revealed that the CLCN4 mutation greatly impaired ion transport by the ClC-4 2Cl−/H+-exchanger and that the mutation in ARHGEF15 reduced GEF exchange activity of the gene product, Ephexin5, by about 50%. Interestingly, these seven probands all presented with seizures within the first six months of life, and six of these have intractable seizures. Significance The finding that seven of ten children carried de novo mutations in genes of known or plausible clinical significance to neuronal excitability suggests that WES will be of use for the molecular genetic diagnosis of sporadic epilepsies in children, especially when seizures are of early onset and difficult to control.
The self-fertile hermaphrodites of C. elegans and C. briggsae evolved from female ancestors by acquiring limited spermatogenesis. Initiation of C. elegans hermaphrodite spermatogenesis requires germline translational repression of the female-promoting gene tra-2, which allows derepression of the three male-promoting fem genes. Cessation of hermaphrodite spermatogenesis requires fem-3 translational repression. We show that C. briggsae requires neither fem-2 nor fem-3 for hermaphrodite development, and that XO Cb-fem-2/3 animals are transformed into hermaphrodites, not females as in C. elegans. Exhaustive screens for Cb-tra-2 suppressors identified another 75 fem-like mutants, but all are self-fertile hermaphrodites rather than females. Control of hermaphrodite spermatogenesis therefore acts downstream of the fem genes in C. briggsae. The outwardly similar hermaphrodites of C. elegans and C. briggsae thus achieve self-fertility via intervention at different points in the core sex determination pathway. These findings are consistent with convergent evolution of hermaphroditism, which is marked by considerable developmental genetic flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.