Human HtrA2 is a novel member of the HtrA serine protease family and shows extensive homology to the Escherichia coli HtrA genes that are essential for bacterial survival at high temperatures. HumHtrA2 is also homologous to human HtrA1, also known as L56/HtrA, which is differentially expressed in human osteoarthritic cartilage and after SV40 transformation of human fibroblasts. HumHtrA2 is upregulated in mammalian cells in response to stress induced by both heat shock and tunicamycin treatment. Biochemical characterization of humHtrA2 shows it to be predominantly a nuclear protease which undergoes autoproteolysis. This proteolysis is abolished when the predicted active site serine residue is altered to alanine by site-directed mutagenesis. In human cell lines, it is present as two polypeptides of 38 and 40 kDa. HumHtrA2 cleaves b-casein with an inhibitor profile similar to that previously described for E. coli HtrA, in addition to an increase in b-casein turnover when the assay temperature is raised from 37 to 45 8C. The biochemical and sequence similarities between humHtrA2 and its bacterial homologues, in conjunction with its nuclear location and upregulation in response to tunicamycin and heat shock suggest that it is involved in mammalian stress response pathways.
The structural requirements of phospholipase C delta 1 for interaction with the plasma membrane were analysed by immunofluorescence after microinjection into living cells. Microinjection of deletion mutants revealed that the region required for membrane attachment and binding of inositol 1,4,5-trisphosphate in vitro corresponded to the pleckstrin homology domain, a structural module described in more than 90 proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.