Fermented dairy products can be rich in beneficial microbes and one such product with potential is mabisi. Mabisi is a traditional fermented milk product from Zambia made through spontaneous fermentation of raw milk at ambient temperature using a calabash (gourd), clay pot, plastic or metal container. The fermentation takes about 48 hours after which the product is stirred and ready for consumption. This study was aimed at determining the types of production methods of mabisi and identifying the critical production process parameters. A survey was conducted using interviews and observations to determine the existing production practices/technologies and to capture indigenous knowledge on mabisi production in nine provinces of Zambia. We found seven different production methods which we coined; tonga, thick-tonga, illa, barotse, backslopping, cooked and creamy types. Interestingly, the tonga-type mabisi was produced throughout the country by different ethnic groups. The main process parameters were found to be fermentation time and temperature, type of containers, presence/absence of backslopping, agitation, heating and cooling, removal of whey and addition of raw milk. And further found that mabisi is a versatile product consumed with a wide variety of foods. This basic information is crucial for production process optimisation and microbial communities dynamics studies.
Fermented cereal-based foods play a crucial role in attaining food and nutrition security for resource-poor populations in sub-Saharan Africa. These products are widely produced by spontaneous fermentation using of cereal grains as raw material. They have a unique taste and flavour, are rich sources of energy and their non-alcoholic nature makes them ideal for consumption by the entire population, including children. Lactic acid bacteria dominate the fermentation process and lead to a low pH of around 4, which suppresses the growth of pathogenic bacteria, thereby increasing the shelf-life and safety of the food. Knowledge about processing practices, consumption patterns and bacterial communities is essential to regulate processing and design appropriate mixes of micro-organisms to produce starter cultures for commercial production of standard-quality fermented foods that meet desired quality characteristics. In four regions of Zambia, we surveyed processing practices and consumption patterns of a spontaneously fermented cereal-based beverage called Munkoyo, commonly produced in Zambia and the Democratic Republic of Congo. Variations in processing practices exist in cooking time of the unfermented maize porridge and time allowed for fermentation. Consumption is mainly at household level and the product is considered as an energy drink. Characterisation of the bacterial communities of over 90 samples with 16S amplicon sequencing on DNA extracted from the entire bacterial community revealed six dominant families, namely Streptococcaceae, Leuconostocaceae, Enterobacteriaceae, Lactabacillales, Bacillaceae and Aeromonadaceae, and a Shannon index of up to 1.18 with an effective number of 3.44 bacterial species. Bacterial communities that underlie the fermentation in Munkoyo differ in their composition for the different regions using common processing steps, suggesting that different combinations of bacteria can be used to achieve successful Munkoyo fermentation. Analysis of aroma profiles in 15 different samples from two different Provinces showed that aldehydes, esters, organic acids, alkanes, alkenes and alcohols dominated.
Many traditionally fermented milk products such as mabisi involve spontaneous fermentation, which can result in bacterial community composition variation due to selection pressure. The aim of this study was to determine the composition of bacterial communities in the different types of mabisi produced across Zambia and identify the factors that influence their composition. Samples of mabisi were collected across the country, and analyzed for pH and bacterial communities using 16S rRNA amplicon sequencing. We found that the bacterial community composition was dominated by members of two phyla, i.e., Firmicutes and Proteobacteria, from which the top 10 most abundant genera were Lactococcus, Lactobacillus, Streptococcus, Enterobacter, Citrobacter, Klebsiella, Kluyvera, Buttiauxella, Aeromonas, and Acinetobacter. The most dominant genus was Lactococcus, which was present in all types of mabisi produced from all regions. The mabisi products from traditional mabisi production regions (TMPRs) were dominated by lactic acid bacteria (LAB) whereas products from non-TMPRs were dominated by non-LAB species. Tonga mabisi, the most popular type of mabisi produced in non-TMPRs, had the most complex and diverse bacterial community composition compared to the other types, which included barotse, backslopping, creamy, and thick-tonga mabisi. Other factors that influenced bacterial community composition were geographical location, fermentation duration and pH while the type of fermentation container and producer did not. This study provides new insights that can be applied in starter culture development as well as microbial functionality studies.
Mabisi is a fermented milk product, traditionally produced in a calabash by uncontrolled fermentation. Due to high costs and a reduced availability of calabashes, nowadays plastic containers are also used for Mabisi production. However, the effect of this change in production practice on the properties of the product has not been documented. Therefore, we aimed at determining the effect of fermentation vessels and types of back-slopping on acidification and microbial communities during fermentation. A series of fifteen experiments using two types of fermentation vessels (plastic buckets and calabashes) in combination with different types of back-slopping (no back-slopping, passive back-slopping, and active back-slopping) were set up at a field site in rural Zambia. In each of the fifteen fermentations we analysed acidification rate of traditional Mabisi fermentation and bacterial diversity over time. No significant difference was found in terms of microbial diversity during and at the end of fermentation between fermentations performed in buckets or previously used calabashes. Bacterial communities in general decreased in diversity over time, where the drop in pH correlated with a decrease in Shannon Index. In case of active back-slopping, the pH drop started right after inoculation while in the no back-slopping and passive back-slopping fermentations, there was a clear lag phase before acidification started. All experimental series resulted in a microbial community dominated by Lactococcus lactis and a Shannon Index, as a measure for diversity, between 0.6 and 2.0. The use of plastic buckets for Mabisi fermentation can be a valuable alternative to the use of calabashes as this study showed no biological and physico-chemical differences between Mabisi resulting from both fermentation vessels, although the reason for perceived differences should be further investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.