Spatial co-location patterns represent the subsets of events whose instances are frequently located together in geographic space. We identified the computational bottleneck in the execution time of a current co-location mining algorithm. A large fraction of the join-based co-location miner algorithm is devoted to computing joins to identify instances of candidate co-location patterns. We propose a novel partialjoin approach for mining co-location patterns efficiently. It transactionizes continuous spatial data while keeping track of the spatial information not modeled by transactions. It uses a transaction-based Apriori algorithm as a building block and adopts the instance join method for residual instances not identified in transactions. We show that the algorithm is correct and complete in finding all co-location rules which have prevalence and conditional probability above the given thresholds. An experimental evaluation using synthetic datasets and a real dataset shows that our algorithm is computationally more efficient than the join-based algorithm.
The redesigned LFMS coil is substantially smaller and more energy-efficient than the original, improving cost, power consumption, and portability. These improvements could facilitate deployment of LFMS in the clinic and potentially at home. This coil redesign approach can also be applied to other magnetic stimulation paradigms. Finally, the anatomically-accurate E-field simulation of LFMS can be used to interpret clinical LFMS data.
Different commercial shams induce different E-field strengths and distributions in the brain, which should be considered in interpreting outcomes of sham stimulation.
Broadening access to both computational and educational resources is critical to diffusing machine learning (ML) innovation. However, today, most ML resources and experts are siloed in a few countries and organizations. In this article, we describe our pedagogical approach to increasing access to applied ML through a massive open online course (MOOC) on Tiny Machine Learning (TinyML). We suggest that TinyML, applied ML on resource-constrained embedded devices, is an attractive means to widen access because TinyML leverages low-cost and globally accessible hardware and encourages the development of complete, self-contained applications, from data collection to deployment. To this end, a collaboration between academia and industry produced a four part MOOC that provides application-oriented instruction on how to develop solutions using TinyML. The series is openly available on the edX MOOC platform, has no prerequisites beyond basic programming, and is designed for global learners from a variety of backgrounds. It introduces real-world applications, ML algorithms, data-set engineering, and the ethical considerations of these technologies through hands-on programming and deployment of TinyML applications in both the cloud and on their own microcontrollers. To facilitate continued learning, community building, and collaboration beyond the courses, we launched a standalone website, a forum, a chat, and an optional course-project competition. We also open-sourced the course materials, hoping they will inspire the next generation of ML practitioners and educators and further broaden access to cutting-edge ML technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.