Washed cuttings provide a continuous record of the rocks encountered during drilling of the main hole of the San Andreas Fault Observatory at Depth (SAFOD). Both protolith and fault rocks exhibit a wide variety of mineral assemblages that reflect variations in some combination of lithology, P‐T conditions, deformation mechanisms, and fluid composition and abundance. Regions of distinct neomineralization bounded by faults may record alteration associated with fluid reservoirs confined by faults. In addition, both smectites occurring as mixed‐layer phases and serpentine minerals are found in association with active strands of the San Andreas Fault that were intersected during drilling, although their rheological influence is not yet fully known. Faults containing these mineralogical phases are prime candidates for continuous coring during Phase 3 of SAFOD drilling in the summer of 2007.
We examine drill cuttings from the San Andreas Fault Observatory at Depth (SAFOD) boreholes to determine the lithology and deformational textures inthe fault zones and host rocks. Cutting samples represent the lithologies from 1.7-km map distance and 3.2-km vertical depth adjacent to the San Andreas Fault. We analyzed two hundred and sixty-six grain-mount thin-sections at an average of 30-m-cuttings sample spacing from the vertical 2.2-km-deep Pilot Hole and the 3.99-km-long Main Hole. We identify Quaternary and Tertiary(?) sedimentary rocks in the upper 700 m of the holes; granitic rocks from 760-1920 m measured depth; arkosic and lithic arenites, interbedded with siltstone sequences, from 1920 to ~3150 m measured depth; and interbedded siltstones, mudstones, and shales from 3150 m to 3987 m measured depth. We also infer the presence of at least fi ve fault zones, which include regions of damage zone and fault core on the basis of percent of cata-clasite abundances, presence of deformed grains, and presence of alteration phases at 1050, 1600-2000, 2200-2500, 2700-3000, 3050-3350, and 3500 m measured depth in the Main Hole. These zones are correlated with borehole geophysical signatures that are consistent with the presence of faults. If the deeper zones of cataclasite and alteration intensity connect to the surface trace of the San Andreas Fault, then this fault zone dips 80-85° southwest, and consists of multiple slip surfaces in a damage zone ~250-300 m thick. This interpretation is supported by borehole geophysical studies, which show this area is a region of low seismic velocities, reduced resistivity, and variable porosity.
[1] The clay mineralogy and texture of rock fragments from the SAFOD borehole at 3067 m and 3436 m measured depth (MD) was investigated by electron microscopy (SEM, TEM) and X-ray-diffraction (XRD). The washed and ultrasonically cleaned samples show slickenfiber striations and thin films of Ca-K bearing smectite that are formed on polished fault surfaces, along freshly opened fractures and within adjacent mineralized veins. The cation composition and hydration behavior of these films differ from the Namontmorillonite of the fresh bentonite drilling mud, although there is more similarity with circulated mud recovered from 3479 m MD. We propose that these thin film smectite precipitates formed by natural nucleation and crystal growth during fault creep, probably associated with the shallow circulation of low temperature aqueous fluids along this shallow portion of the San Andreas Fault.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.