Dextran has recently been investigated as an alternative to poly(ethylene glycol) (PEG) for low protein-binding, cell-resistant coatings on biomaterial surfaces. Although antifouling properties of surface-grafted dextran and PEG are quite similar, surface-bound dextran has multiple reactive sites for high-density surface immobilization of biologically active molecules. We recently reported nontoxic aqueous methods to covalently immobilize dextran on material surfaces. These dextran coatings effectively limited cell adhesion and spreading in the presence of serum-borne cell adhesion proteins. In this study we utilized the same nontoxic aqueous methods to graft cell adhesion peptides on low protein-binding dextran monolayer surfaces. Chemical composition of all modified surfaces was verified by X-ray photoelectron spectroscopy (XPS). Surface-grafted cell adhesion peptides stimulated endothelial cell, fibroblast, and smooth muscle cell attachment and spreading in vitro. In contrast, surface-grafted inactive peptide sequences did not promote high levels of cell interaction. Surface-grafted high affinity cyclic RGD peptides promoted cell type-dependent interactions. With dextran-based surface coatings, it will be possible to develop well-defined surface modifications that promote specific cell interactions and perhaps better performance in long-term biomaterial implants.
Microfabricated electrospray thrusters could revolutionize the spacecraft industry by providing efficient propulsion capabilities to micro and nano satellites (1–100 kg). We present the modeling, design, fabrication and characterization of a new generation of devices, for the first time integrating in the fabrication process individual accelerator electrodes capable of focusing and accelerating the emitted sprays. Integrating these electrodes is a key milestone in the development of this technology; in addition to increasing the critical performance metrics of thrust, specific impulse and propulsive efficiency, the accelerators enable a number of new system features such as power tuning and thrust vectoring and balancing. Through microfabrication, we produced high density arrays (213 emitters cm−2) of capillary emitters, assembling them at wafer-level with an extractor/accelerator electrode pair separated by micro-sandblasted glass. Through IV measurements, we could confirm that acceleration could be decoupled from the extraction of the spray—an important element towards the flexibility of this technology. We present the largest reported internally fed microfabricated arrays operation, with 127 emitters spraying in parallel, for a total beam of 10–30 µA composed by 95% of ions. Effective beam focusing was also demonstrated, with plume half-angles being reduced from approximately 30° to 15° with 2000 V acceleration. Based on these results, we predict, with 3000 V acceleration, thrust per emitter of 38.4 nN, specific impulse of 1103 s and a propulsive efficiency of 22% with <1 mW/emitter power consumption.
New modes of nanoelectrospray (nES) have been identified that exhibit stable high-frequency current oscillations in the kilohertz range. In-line flow rate measurements during nES have for the first time allowed the accurate determination of the spray current and volumetric flow rate dependence on applied voltage. High-speed video imaging has revealed that each current pulse corresponds to the periodic formation of a short-lived stable cone-jet structure at the capillary tip. These findings are of particular importance and suggest greater process monitoring and control in nES-MS systems is necessary if efficiency and ion yield are to be optimized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.