Hyperactive signaling of the MAP kinase pathway resulting from the constitutively active B-Raf(V600E) mutated enzyme has been observed in a number of human tumors, including melanomas. Herein we report the discovery and biological evaluation of GSK2118436, a selective inhibitor of Raf kinases with potent in vitro activity in oncogenic B-Raf-driven melanoma and colorectal carcinoma cells and robust in vivo antitumor and pharmacodynamic activity in mouse models of B-Raf(V600E) human melanoma. GSK2118436 was identified as a development candidate, and early clinical results have shown significant activity in patients with B-Raf mutant melanoma.
A class of 2-acyliminobenzimidazoles has been developed as potent and selective inhibitors of anaplastic lymphoma kinase (ALK). Structure based design facilitated the rapid development of structure-activity relationships (SAR) and the optimization of kinase selectivity. Introduction of an optimally placed polar substituent was key to solving issues of metabolic stability and led to the development of potent, selective, orally bioavailable ALK inhibitors. Compound 49 achieved substantial tumor regression in an NPM-ALK driven murine tumor xenograft model when dosed qd. Compounds 36 and 49 show favorable potency and PK characteristics in preclinical species indicative of suitability for further development.
Activation of the Ras-Raf-MEK-ERK pathway has been implicated in a large range of human cancers. Growth factor receptor stimulation by extracellular ligands activates Ras, which then sets in motion a signal transduction cascade through the Raf, MEK and ERK serine/threonine kinases. Mutation of the B-Raf kinase constitutively activates MAPK signalling, thus bypassing the need for upstream stimuli. This has been genetically associated with several human cancers, especially occurrence of the B-RafV600E mutant and its high prevalence in melanoma, colorectal carcinoma, ovarian cancer, papillary thyroid carcinoma, and cholangiocarcinoma. The ability to selectively and potently inhibit B-Raf should provide a potential therapy for patients with mutant B-Raf tumors, for which addictive dependency on this pathway is observed. We have identified a novel, potent, and selective Raf kinase inhibitor that is capable of inhibiting the kinase activity of wild-type B-Raf, B-RafV600E and c-Raf with IC50 values of 3.2, 0.8, and 5.0 nM, respectively. Kinase panel screening for over 270 kinases has indicated that this inhibitor is selective for Raf kinase, with ∼400 fold selectivity towards B-Raf over 91% of the other kinases tested. Specific cellular inhibition of B-RafV600E kinase by this inhibitor leads to decreased ERK phosphorylation and inhibition of cell proliferation by an initial arrest in the G1 phase of the cell cycle, followed by cell death. This inhibition is selective for cancer cells that specifically encode the mutation for B-RafV600E. Oral compound administration inhibits the growth of B-RafV600E mutant melanoma (A375P) and colon cancer (Colo205) human tumor xenografts, growing subcutaneously in immuno-compromised mice. This cell-specific B-RafV600E inhibitor is currently being evaluated in a human Phase I clinical trial.
Citation Information: Mol Cancer Ther 2009;8(12 Suppl):B88.
Because of its strong genetic validation, Na1.7 has attracted significant interest as a target for the treatment of pain. We have previously reported on a number of structurally distinct bicyclic heteroarylsulfonamides as Na1.7 inhibitors that demonstrate high levels of selectivity over other Na isoforms. Herein, we report the discovery and optimization of a series of atropisomeric quinolinone sulfonamide inhibitors [ Bicyclic sulfonamide compounds as sodium channel inhibitors and their preparation . WO 2014201206, 2014 ] of Na1.7, which demonstrate nanomolar inhibition of Na1.7 and exhibit high levels of selectivity over other sodium channel isoforms. After optimization of metabolic and pharmacokinetic properties, including PXR activation, CYP2C9 inhibition, and CYP3A4 TDI, several compounds were advanced into in vivo target engagement and efficacy models. When tested in mice, compound 39 (AM-0466) demonstrated robust pharmacodynamic activity in a Na1.7-dependent model of histamine-induced pruritus (itch) and additionally in a capsaicin-induced nociception model of pain without any confounding effect in open-field activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.