Abstract-Motion of the carotid artery wall is important for the quantification of arterial elasticity and contractility and can be estimated with a number of techniques. In this paper, a framework for quantitative evaluation of motion analysis techniques from B-mode ultrasound images is introduced. Six synthetic sequences were produced using 1) a real image corrupted by Gaussian and speckle noise of 25 and 15 dB, and 2) the ultrasound simulation package Field II. In both cases, a mathematical model was used, which simulated the motion of the arterial wall layers and the surrounding tissue, in the radial and longitudinal directions. The performance of four techniques, namely optical flow (OF H S ), weighted least-squares optical flow (OF L K (W L S ) ), block matching (BM), and affine block motion model (ABMM), was investigated in the context of this framework. The average warping indices were lowest for OF L K (W L S ) (1.75 pixels), slightly higher for ABMM (2.01 pixels), and highest for BM (6.57 pixels) and OF H S (11.57 pixels). Due to its superior performance, OF L K (W L S ) was used to quantify motion of selected regions of the arterial wall in real ultrasound image sequences of the carotid artery. Preliminary results indicate that OF L K (W L S ) is promising, because it efficiently quantified radial, longitudinal, and shear strains in healthy adults and diseased subjects.
In this paper, a multiresolution approach is suggested for texture classification of atherosclerotic tissue from B-mode ultrasound. Four decomposition schemes, namely, the discrete wavelet transform, the stationary wavelet transform, wavelet packets (WP), and Gabor transform (GT), as well as several basis functions, were investigated in terms of their ability to discriminate between symptomatic and asymptomatic cases. The mean and standard deviation of the detail subimages produced for each decomposition scheme were used as texture features. Feature selection included 1) ranking the features in terms of their divergence values and 2) appropriately thresholding by a nonlinear correlation coefficient. The selected features were subsequently input into two classifiers using support vector machines (SVM) and probabilistic neural networks. WP analysis and the coiflet 1 produced the highest overall classification performance (90% for diastole and 75% for systole) using SVM. This might reflect WP's ability to reveal differences in different frequency bands, and therefore, characterize efficiently the atheromatous tissue. An interesting finding was that the dominant texture features exhibited horizontal directionality, suggesting that texture analysis may be affected by biomechanical factors (plaque strains).
Valid risk stratification for carotid atherosclerotic plaques represents a crucial public health issue toward preventing fatal cerebrovascular events. Although motion analysis (MA) provides useful information about arterial wall dynamics, the identification of motion-based risk markers remains a significant challenge. Considering that the ability of a motion estimator (ME) to handle changes in the appearance of motion targets has a major effect on accuracy in MA, we investigated the potential of adaptive block matching (ABM) MEs, which consider changes in image intensities over time. To assure the validity in MA, we optimized and evaluated the ABM MEs in the context of a specially designed in silico framework. ABM(FIRF2), which takes advantage of the periodicity characterizing the arterial wall motion, was the most effective ABM algorithm, yielding a 47% accuracy increase with respect to the conventional block matching. The in vivo application of ABM(FIRF2) revealed five potential risk markers: low movement amplitude of the normal part of the wall adjacent to the plaques in the radial (RMA(PWL)) and longitudinal (LMA(PWL)) directions, high radial motion amplitude of the plaque top surface (RMA(PTS)), and high relative movement, expressed in terms of radial strain (RSI(PL)) and longitudinal shear strain (LSSI(PL)), between plaque top and bottom surfaces. The in vivo results were reproduced by OF(LK(WLS)) and ABM(KF-K2), MEs previously proposed by the authors and with remarkable in silico performances, thereby reinforcing the clinical values of the markers and the potential of those MEs. Future in vivo studies will elucidate with confidence the full potential of the markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.