Changes in aqueous- and solid-phase plutonium oxidation state were monitored over time in hematite (alpha-Fe2O3) and goethite (alpha-FeOOH) suspensions containing 239Pu(V)-amended 0.01 M NaCl. Solid-phase oxidation state distribution was quantified by leaching plutonium into the aqueous phase and applying an ultrafiltration/solvent extraction technique. The technique was verified using oxidation state analogues of plutonium and sediment-free controls of known Pu oxidation state. Batch kinetic experiments were conducted at hematite and goethite concentrations between 10 and 500 m2 L(-1) in the pH range of 3-8. Surface-mediated reduction of Pu(V) was observed for both minerals at pH values of 4.5 and greater. At pH 3 no adsorption of Pu(V) was observed on either goethite or hematite; consequently, no reduction was observed. For hematite, adsorption of Pu(V) was the rate-limiting step in the adsorption/reduction process. In the pH range of 5-8, the overall removal of Pu(V) from the system (solid and aqueous phases) was found to be approximately second order with respect to hematite concentration and of order -0.39 with respect to the hydrogen ion concentration. The overall reaction rate constant (k(rxn)), including both adsorption and reduction of Pu(V), was 1.75+/-2.05 x 10(-10) (m(-2) L)(-2.08) (mol(-1) L)(-0.39) (s(-1)). In contrast to hematite, Pu(V) adsorption to goethite occurred rapidly relative to reduction. At a given pH,the reduction rate was approximately independent of the goethite concentration, although the hydrogen ion concentration (pH) had only a slight effect on the overall reaction rate. For goethite, the overall reaction rates at pH 5 and pH 8 were 6.0 x 10(-5) and 1.5 x 10(-4) s(-1), respectively. For hematite, the reaction rate increased by 3 orders of magnitude across the same pH range.
Changes in aqueous- and solid-phase Pu oxidation state were monitored over time in magnetite (Fe3O4) suspensions containing 239Pu(V)-amended 0.01 M NaCl. Oxidation state distribution was determined by leaching of Pu into an aqueous phase followed by an ultrafiltration/solvent extraction technique. The capability of the technique to measure Pu oxidation state distribution was verified using 230Th(IV), 237Np(V), and 233U(VI) as oxidation state analogues. Reduction of Pu(V) was observed at all pH values (pH 3 to 8) and magnetite concentrations (10 to 100 m2 L(-1)). In the pH range 5 to 8, adsorption was a rate-limiting step, and reduction was mediated by the solid phase; at pH 3 reduction occurred in the aqueous phase. The overall reaction (describing both adsorption and reduction of Pu(V)) was found to be approximately first order with respect to the magnetite concentration and of order -0.34+/-0.02 with respect to the hydrogen ion concentration. Assuming first order dependence with respect to Pu, the overall reaction rate constant was calculated as k(rxn) = 4.79+/-0.62 x 10(-8) (m(-2) L)0.99(mol(-1) L)-0.34(s(-1)). The Pu(IV) solid-phase species became more stable over time.
Lysimeter and laboratory studies were conducted to identify the controlling chemical processes influencing Pu(IV) mobility through the vadose zone. A 52-L lysimeter containing sediment from the Savannah River Site, South Carolina and solid PuIV(NO3)4 was left exposed to natural wetting and drying cycles for 11 years before the lysimeter sediment was sampled. Pu had traveled 10 cm, with >95% of the Pu remaining within 1.25 cm of the source. Laboratory studies showed that the sediment quickly reduced Pu(V) to Pu(IV) (the pseudo-first-order reduction rate constant, Kobs, was 0.11 h(-1)). Of particular interest was that this same sediment could be induced to release very low concentrations of sorbed Pu under oxidizing conditions, presumably by oxidation of sorbed Pu(IV) to the more mobile Pu(V) species. Transport modeling supported the postulation that Pu oxidation occurred in the lysimeter sediment; the inclusion of an oxidation term in the model produced simulations that capture the Pu depth profile data. By not including the oxidation process in the model, Pu mobility was grossly underestimated by a factor of 3.5. It is concluded that both oxidation and reduction mechanisms can play an important role in Pu transportthrough the vadose zone and should be considered when evaluating disposal of Pu-bearing wastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.