[1] Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate-bearing sediments. Formation phenomena include pore-scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small-strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate-bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate-bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.
[1] Clay-rich mass transport deposits (MTDs) in the Ursa Basin, Gulf of Mexico, record failures that mobilized along extensional failure planes and transformed into long runout flows. Failure proceeded retrogressively: scarp formation unloaded adjacent sediment causing extensional failure that drove successive scarp formation updip. This model is developed from three-dimensional seismic reflection data, core and log data from Integrated Ocean Drilling Project (IODP) Expedition 308, and triaxial shear experiments. MTDs are imaged seismically as low-amplitude zones above continuous, grooved, high-amplitude basal reflections and are characterized by two seismic facies. A Chaotic facies typifies the downdip interior, and a Discontinuous Stratified facies typifies the headwalls/sidewalls. The Chaotic facies contains discontinuous, high-amplitude reflections that correspond to flow-like features in amplitude maps: it has higher bulk density, resistivity, and shear strength, than bounding sediment. In contrast, the Discontinuous Stratified facies contains relatively dim reflections that abut against intact pinnacles of parallel-stratified reflections: it has only slightly higher bulk density, resistivity, and shear strength than bounding sediment, and deformation is limited. In both facies, densification is greatest at the base, resulting in a strong basal reflection. Undrained shear tests document strain weakening (sensitivity = 3). We estimate that failure at 30 meters below seafloor will occur when overpressure = 70% of the hydrostatic effective stress: under these conditions soil will liquefy and result in long runout flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.