T cell factor 1 (TCF-1) is a transcription factor known to act downstream of the canonical Wnt pathway and is essential for normal T cell development. However, its physiological roles in mature CD8+ T cell responses are unknown. Here we showed that TCF-1 deficiency limited proliferation of CD8+ effector T cells and impaired their differentiation towards a central memory phenotype. Moreover, TCF-1-deficient memory CD8+ T cells were progressively lost over time, exhibiting reduced expression of the anti-apoptotic molecule Bcl-2, interleukin-2 receptor β chain and diminished IL-15-driven proliferation. TCF-1 was directly associated with the Eomes allele and the Wnt-TCF-1 pathway was necessary and sufficient for optimal Eomes expression in naïve and memory CD8+ T cells. Importantly, forced expression of Eomes partly protected TCF-1-deficient memory CD8+ T cells from time-dependent attrition. Our studies thus identify TCF-1 as a critical player in a transcriptional program that regulates memory CD8 differentiation and longevity.
The ability to develop and sustain populations of memory T cells after infection or immunization is a hallmark of the adaptive immune response and a basis for protective vaccination against infectious disease. Technical advances that allow direct ex vivo identification and characterization of antigen-specific CD8+ T cells at various stages of the response to infection or vaccination in mouse models have fuelled efforts to characterize the factors that control memory CD8+ T-cell generation. Here, we dissect the input signals that shape the characteristics of the memory CD8+ T-cell response and discuss how manipulation of these signals has the potential to reshape CD8+ T-cell memory and improve the efficacy of vaccination.
The extent of infection and rate of pathogen clearance are thought to determine both the magnitude of antigen-specific CD8(+) T cell expansion and the ensuing contraction to a stable number of memory cells. We show that CD8(+) T cell expansion after Listeria monocytogenes infection was primarily dependent on the initial infection dose or amount of antigen displayed, and was also influenced by the rate of pathogen clearance. However, the onset and kinetics of CD8(+) T cell contraction after L. monocytogenes and lymphocytic choriomeningitis virus infections were independent of the magnitude of expansion, dose and duration of infection or amount of antigen displayed. Thus, major features of antigen-specific CD8(+) T cell homeostasis, including the contraction phase of an immune response, may be programmed early after infection.
Efficient boosting of memory T-cell numbers to protective levels generally requires a relatively long interval between immunizations. Decreasing this interval could be crucial in biodefense and cancer immunotherapy, in which rapid protective responses are essential. Here, we show that vaccination with peptide-coated dendritic cells (DCs) generated CD8+ T cells with the phenotype and function of memory cells within 4-6 d. These early memory CD8+ T cells underwent vigorous secondary expansion in response to a variety of booster immunizations, leading to elevated numbers of effector and memory T cells and enhanced protective immunity. Coinjection of CpG oligodeoxynucleotides, potent inducers of inflammation that did not alter the duration of DC antigen display, prevented the rapid generation of memory T cells in wild-type mice but not in mice lacking the interferon (IFN)-gamma receptor. These data show that DC vaccination stimulates a pathway of accelerated generation of memory T cells, and suggest that events of inflammation, including the action of IFN-gamma on the responding T cells, control the rate of development of memory CD8+ T cells.
Plasmodium infection of erythrocytes induces clinical malaria. Parasite-specific CD4+ T cells correlate with reduced parasite burdens and severity of human malaria, and are required to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that P. falciparum infection of humans increased expression of an inhibitory receptor (PD-1) associated with T cell dysfunction. In vivo blockade of PD-L1 and LAG-3 restored CD4+ T cell function, amplified T follicular helper cell and germinal center B cell and plasmablast numbers, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, which can be rescued to enhance parasite control using inhibitory therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.