We examine the application of a parametric equation of state to several magnetic and fluid systems near the critical point. An attractively simple form represents the experimental data very closely and this suggests there may be a functional relationship between the critical exponents and coefficients.
An unexpected three-stage melting transition has been observed in two-dimensional (2D) free-standing liquid-crystal films by in situ electron-diffraction and optical-reflectivity measurements. These data suggest the existence of two phases between the 2D solid and liquid: a hexatic phase and, at a higher temperature, an intermediate liquid phase with hexatic-like positional correlations ( approximately 40 angstroms) but no long-range orientational order. Previous high-resolution heat-capacity measurements have revealed a divergent-like anomaly at the hexatic-liquid transition that sharply contradicts the predictions of 2D melting theories. The observation of an intermediate isotropic phase may alter our understanding of 2D melting and lead to reconciliation between current experiments and theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.