Calcitonin gene-related peptide (CGRP) immunoreactivity was found throughout the entire spinal cord of man, marmoset, horse, pig, cat, guinea pig, mouse, rat, and frog. CGRP-immunoreactive fibers were most concentrated in the dorsal horn. In the ventral horn of some species large immunoreactive cells, tentatively characterized as motoneurons, were present. Pretreatment of rats with colchicine enhanced staining of these large cells but did not reveal CGRP-immunoreactive cell bodies in the dorsal horn. In the dorsal root ganglia, CGRP immunoreactivity was observed in most of the small and some of the intermediate sized cells. Substance P immunoreactivity, where present, was co-localized with CGRP to a proportion of the small cells. In the cat the ratio of substance P-immunoreactive to CGRP-immunoreactive ganglion cells was 1:2.7 (p less than 0.001). The concentration of CGRP-immunoreactive material in tissue extracts was determined by radioimmunoassay. In the dorsal horn of the rat spinal cord the levels of peptide were found to range from 225.7 +/- 30.0 pmol/gm of wet weight in the cervical region to 340.6 +/- 74.6 pmol/gm in the sacral spinal cord. In the rat ventral spinal cord, levels of 15.7 +/- 2.7 to 35.1 +/- 10.6 pmol/gm were found. The concentration in dorsal root ganglia of the lumbar region was 225.4 +/- 46.9 pmol/gm. Gel permeation chromatography of this extractable CGRP-like immunoreactivity revealed three distinct immunoreactive peaks, one eluting at the position of synthetic CGRP and the others, of smaller size, eluting later. In cats and rats, rhizotomy induced a marked loss of CGRP-immunoreactive fibers from the dorsal horn of the spinal cord. In the cat, unilateral lumbosacral dorsal rhizotomy resulted in a significant (p less than 0.05) reduction of extractable CGRP from the ipsilateral lumbar dorsal horn (5.6 +/- 1.2 pmol/gm of wet weight) compared to the contralateral side (105.0 +/- 36.0 pmol/gm of wet weight). We conclude that the major origin of CGRP in the dorsal spinal cord is extrinsic, from afferent fibers which are probably derived from cells in the dorsal root ganglia. The selective distribution of CGRP throughout sensory, motor, and autonomic areas of the spinal cord suggests many putative roles for this novel peptide.
The human nasal cavity filters and conditions inspired air while providing olfactory function. Detailed experimental study of nasal airflow patterns has been limited because of the complex geometry of the nasal cavity. In this work, particle image velocimetry was used to determine two-dimensional instantaneous velocity vector fields in parallel planes throughout a model of the nasal cavity that was subjected to a nonoscillatory flow rate of 125 ml/s. The model, which was fabricated from 26 computed tomography scans by using rapid prototyping techniques, is a scaled replica of a human right nasal cavity. The resulting vector plots show that the flow is laminar and regions of highest velocity are in the nasal valve and in the inferior airway. The relatively low flow in the olfactory region appears to protect the olfactory bulb from particulate pollutants. Low flows were also observed in the nasal meatuses, whose primary function has been the subject of debate. Comparison of sequentially recorded data suggests a steady flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.