This discussion starts with a mechanics version of Parseval's energy theorem applicable to any discrete lattice material with periodic internal structure: a microtruss, grid, frame, origami or tessellation. It provides a simple relationship between the strain energy volumetric/usual and
spectral
distributions in the reciprocal space. The spectral energy distribution leads directly to a spectral entropy of lattice deformation (Shannon's type), whose variance with a material coordinate represents the decrease of information about surface loads in the material interior. Spectral entropy is also a basic measure of complexity of mechanical responses of metamaterials to surface and body loads. Considering transformation of the energy volumetric and spectral distributions with a material coordinate pointed away from a surface load, several interesting anomalies are seen even for simple lattice materials, when compared to continuum materials. These anomalies include selective filtering of surface Raleigh waves (sinusoidal pressure patterns), Saint–Venant effect inversion illustrated by energy spectral distribution contours, occurrence of ‘hiding pockets’ of low deformation, and redirection of strain energy maximum away from axis of a concentrated surface load. The latter phenomenon can be significant for impact protection applications of mechanical metamaterials.
A negative extensibility material structure pulls back and contracts when the external tensile load reaches a certain critical level. In this paper, we reveal basic mathematical features of the nonlinear strain energy function responsible for this unusual mechanical property. A systematic discussion leads to a comprehensive phase diagram in terms of design parameters for a simple unit cell structure that provides a panoramic view of all possible nonlinear mechanical behaviors. A negative extensibility region clearly is identified in the diagram. The sought property is seen to be rare, occurring only for a very narrow range of the design parameters. Nonetheless, due to the simplicity of the studied structure we suggest that the negative extensibility should be a more common phenomenon than previously thought. It can appear in simple bistable cells made of only several linearly elastic links, although at some peculiar combinations of their properties. These bistable unit cells can be used to design periodic mechanical metamaterials whose examples are shown as well as innovative architectural metastructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.