Synthetic genes encoding recombinant spider silk proteins have been constructed, cloned, and expressed. Protein sequences were derived from Nephila clavipes dragline silk proteins and reverse-translated to the corresponding DNA sequences. Codon selection was chosen to maximize expression levels in Escherichia coli. DNA "monomer" sequences were multimerized to encode high molecular weight synthetic spider silks using a "head-to-tail" construction strategy. Multimers were cloned into a prokaryotic expression vector and the encoded silk proteins were expressed in E. coli upon induction with IPTG. Four multimer, ranging in size from 14.7 to 41.3 kDa, were chosen for detailed analysis. These proteins were isolated by immobilized metal affinity chromatography and purified using reverse-phase HPLC. The composition and identity of the purified proteins were confirmed by amino acid composition analysis, N-terminal sequencing, laser desorption mass spectroscopy, and Western analysis using antibodies reactive to native spider dragline silk. Circular dichroism measurements indicate that the synthetic spider silks have substantial beta-sheet structure.
Mass spectrometry proteomics typically relies upon analyzing outcomes of single analyses; however, comparing raw data across multiple experiments should enhance both peptide/protein identification and quantitation. In the absence of convincing tandem MS identifications, comparing peptide quantities between experiments (or fractions) requires the chromatographic alignment of MS signals. An extension of dynamic time warping (DTW), termed ordered bijective interpolated warping (OBI-Warp), is presented and used to align a variety of electrospray ionization liquid chromatography mass spectrometry (ESI-LC-MS) proteomics data sets. An algorithm to produce a bijective (one-to-one) function from DTW output is coupled with piecewise cubic hermite interpolation to produce a smooth warping function. Data sets were chosen to represent a broad selection of ESI-LC-MS alignment cases. High confidence, overlapping tandem mass spectra are used as standards to optimize and compare alignment parameters. We determine that Pearson's correlation coefficient as a measure of spectra similarity outperforms covariance, dot product, and Euclidean distance in its ability to produce correct alignments with optimal and suboptimal alignment parameters. We demonstrate the importance of penalizing gaps for best alignments. Using optimized parameters, we show that OBI-Warp produces alignments consistent with time standards across these data sets. The source and executables are released under MIT style license at http://obi-warp.sourceforge.net/.
Liquid chromatography-mass spectrometry is widely used for comparative replicate sample analysis in proteomics, lipidomics and metabolomics. Before statistical comparison, registration must be established to match corresponding analytes from run to run. Alignment, the most popular correspondence approach, consists of constructing a function that warps the content of runs to most closely match a given reference sample. To date, dozens of correspondence algorithms have been proposed, creating a daunting challenge for practitioners in algorithm selection. Yet, existing reviews have highlighted only a few approaches. In this review, we describe 50 correspondence algorithms to facilitate practical algorithm selection. We elucidate the motivation for correspondence and analyze the limitations of current approaches, which include prohibitive runtimes, numerous user parameters, model limitations and the need for reference samples. We suggest and describe a paradigm shift for overcoming current correspondence limitations by building on known liquid chromatography-mass spectrometry behavior.
Ceramide is a sphingolipid that serves as an important second messenger in an increasing number of stress-induced pathways. Ceramide has long been known to affect the mitochondria, altering both morphology and physiology. We sought to assess the impact of ceramide on skeletal muscle mitochondrial structure and function. A primary observation was the rapid and dramatic division of mitochondria in ceramide-treated cells. This effect is likely to be a result of increased Drp1 (dynamin-related protein 1) action, as ceramide increased Drp1 expression and Drp1 inhibition prevented ceramide-induced mitochondrial fission. Further, we found that ceramide treatment reduced mitochondrial O2 consumption (i.e. respiration) in cultured myotubes and permeabilized red gastrocnemius muscle fibre bundles. Ceramide treatment also increased H2O2 levels and reduced Akt/PKB (protein kinase B) phosphorylation in myotubes. However, inhibition of mitochondrial fission via Drp1 knockdown completely protected the myotubes and fibre bundles from ceramide-induced metabolic disruption, including maintained mitochondrial respiration, reduced H2O2 levels and unaffected insulin signalling. These data suggest that the forced and sustained mitochondrial fission that results from ceramide accrual may alter metabolic function in skeletal muscle, which is a prominent site not only of energy demand (via the mitochondria), but also of ceramide accrual with weight gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.