Most current approaches to concurrency control in database systems rely on locking of data objects as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented. The methods used are "optimistic" in the sense that they rely mainly on transaction backup as a control mechanism, "hoping" that conflicts between transactions will not occur. Applications for which these methods should be more efficient than locking are discussed.
Cytoplasmic dynein is a multisubunit minus-end–directed microtubule motor that serves multiple cellular functions. Genetic studies in Drosophila and mouse have demonstrated that dynein function is essential in metazoan organisms. However, whether the essential function of dynein reflects a mitotic requirement, and what specific mitotic tasks require dynein remains controversial. Drosophila is an excellent genetic system in which to analyze dynein function in mitosis, providing excellent cytology in embryonic and somatic cells. We have used previously characterized recessive lethal mutations in the dynein heavy chain gene, Dhc64C, to reveal the contributions of the dynein motor to mitotic centrosome behavior in the syncytial embryo. Embryos lacking wild-type cytoplasmic dynein heavy chain were analyzed by in vivo analysis of rhodamine-labeled microtubules, as well as by immu-nofluorescence in situ methods. Comparisons between wild-type and Dhc64C mutant embryos reveal that dynein function is required for the attachment and migration of centrosomes along the nuclear envelope during interphase/prophase, and to maintain the attachment of centrosomes to mitotic spindle poles. The disruption of these centrosome attachments in mutant embryos reveals a critical role for dynein function and centrosome positioning in the spatial organization of the syncytial cytoplasm of the developing embryo.
Most current approaches to concurrency control in database systems rely on locking of data objects as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented. The methods used are "optimistic" in the sense that they rely mainly on transaction backup as a control mechanism, "hoping" that conflicts between transactions will not occur. Applications for which these methods should be more efficient than locking are discussed.
Amyloid precursor protein (APP) vesicle movement by kinesin-1 and cytoplasmic dynein exhibits kinesin-1–dependent velocity. Our data also suggest that kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and that their direction and velocity are controlled at least in part by dynein IC.
We propose a new frequency-based replacement algorithm for managing caches used for disk blocks by a file system, database management system, or disk control unit, which we refer to here as data caches. Previously, LRU replacement has usually been used for such caches. We describe a replacement algorithm based on the concept of maintaining reference counts in which locality has been “factored out”. In this algorithm replacement choices are made using a combination of reference frequency and block age. Simulation results based on traces of file system and I/O activity from actual systems show that this algorithm can offer up to 34% performance improvement over LRU replacement, where the improvement is expressed as the fraction of the performance gain achieved between LRU replacement and the theoretically optimal policy in which the reference string must be known in advance. Furthermore, the implementation complexity and efficiency of this algorithm is comparable to one using LRU replacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.