The myrosinase‐glucosinolate system is involved in a range of biological activities affecting herbivorous insects, plants and fungi. The system characteristic of the order Capparales includes sulphur‐containing substrates, the degradative enzymes myrosinases, and cofactors. The enzyme‐catalyzed hydrolysis of glucosinolates initially involves cleavage of the thioglucoside linkage, yielding D‐glucose and an unstable thiohydroximate‐O‐sulphonate that spontaneously rearranges, resulting in the production of sulphate and one of a wide range of possible reaction products. The products are generally a thiocyanate, isothiocyanate or nitrile, depending on factors such as substrate, pH or availability of ferrous ions. Glucosinolates in crucifers exemplify components that are often present in food and feed plants and are a major problem in the utilization of products from the plants. Toxic degradation products restrict the use of cultivated plants, e.g. those belonging to the Brassicaceae. The myrosinase‐glucosinolate system may, however, have several functions in the plant. The glucosinolate degradation products are involved in defence against insects and phytopathogens. and potentially in sulphur and nitrogen metabolism and growth regulation. The compartmentalization of the components of the myrosinase‐glucosinolate system and the cell‐specific expression of the myrosinase represents a unique plant defence system. In this review, we summarize earlier results and discuss the organisation and biochemistry of the myrosinase‐glucosinolate system.
Insect feeding on plants causes a complex series of coordinated defence responses. Little is known, however, about the time-dependent aspect of induced changes. Here we present a time series-based investigation of Arabidopsis thaliana Ler subjected to attack by a specialist pest of Brassicaceae species, Brevicoryne brassicae. Transcriptome and metabolome changes were studied at 6, 12, 24 and 48 h after infestation to monitor the progress of early induced responses. The use of full-genome oligonucleotide microarrays revealed the initiation of extensive gene expression changes already during the first 6 h of infestation. Data indicated the involvement of reactive oxygen species (ROS) and calcium in early signalling, and salicylic acid (SA) and jasmonic acid (JA) in the regulation of defence responses. Transcripts related to senescence, biosynthesis of antiinsect proteins, indolyl glucosinolates (GS) and camalexin, as well as several uncharacterized to date WRKY transcription factors, were induced. Follow-up studies of defenceinvolved secondary metabolites revealed depositions of callose at the insects' feeding sites, a decrease in the total level of aliphatic GS, particularly 3-hydroxypropyl glucosinolate, and accumulation of 4-methoxyindol-3-ylmethyl glucosinolate 48 h after the attack. The novel role of camalexin, induced as a part of defence against aphids, was verified in fitness experiments. Fecundity of B. brassicae was reduced on camalexin-accumulating wild-type (WT) plants as compared with camalexin-deficient pad3-1 mutants. Based on experimental data, a model of plant-aphid interactions at the early phase of infestation was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.