Ecosystem-based fisheries management (EBFM) was developed to move beyond single species management by incorporating ecosystem considerations for the sustainable utilization of marine resources. Due to the wide range of fishery characteristics, including different goals of fisheries management across regions and species, theoretical best practices for EBFM vary greatly. Here we highlight the lack of consensus in the interpretation of EBFM amongst professionals in marine science and its implementation. Fisheries policy-makers and managers, stock assessment scientists, conservationists, and ecologists had very different opinions on the degree to which certain management strategies would be considered EBFM. We then assess the variability of the implementation of EBFM, where we created a checklist of characteristics typifying EBFM and scored fisheries across different regions, species, ecosystems, and fishery size and capacity. Our assessments show fisheries are unlikely to meet all the criteria on the EBFM checklist. Consequentially, it is unnecessary for management to practice all the traits of EBFM, as some may be disparate from the ecosystem attributes or fishery goals. Instead, incorporating some ecosystem-based considerations to fisheries management that are context-specific is a more realistic and useful way for EBFM to occur in practice.
Pacific and Atlantic herring populations (genus Clupea) commonly experience episodic collapse and recovery. Recovery time durations are of great importance for the sustainability of fisheries and ecosystems. We collated information from 64 herring populations to characterize herring fluctuations and determine the time scales at low biomass and at high and low recruitment, and use generalized linear models and Random Survival Forests to identify the most important bottom‐up, top‐down and intrinsic factors influencing recovery times. Compared to non‐forage fish taxa, herring decline to lower minima, recover to higher maxima and show larger changes in biomass, implying herring are more prone to booms and busts than non‐forage fish species. Large year classes are more common in herring, but occur infrequently and are uncorrelated among regionally grouped stocks, implying local drivers of high recruitment. Management differs between Pacific and Atlantic herring fisheries, where at similarly low biomass, Pacific fisheries tend to be closed while Atlantic fisheries remain open. This difference had no apparent effect on herring recovery times, which averaged 11 years, although most stocks with longer recovery periods had not yet recovered at the end of the observation period. Biomass recovery is best explained by median recruitment and variability in sea surface height anomalies and sea surface temperatures—higher variability leads to shorter recovery times. In addition, the duration of recruitment failure is closely linked with low biomass. While recovery times rely on the nature of the relationship between spawning biomass and recruitment, they are still largely governed by complex and uncertain processes.
The Exxon Valdez oil spill occurred in March 1989 in Prince William Sound, Alaska, and was one of the worst environmental disasters on record in the United States. Despite long-term data collection over the nearly three decades since the spill, tremendous uncertainty remains as to how significantly the spill affected fishery resources. Pacific herring (Clupea pallasii) and some wild Pacific salmon populations (Oncorhynchus spp.) in Prince William Sound declined in the early 1990s, and have not returned to the population sizes observed in the 1980s. Discerning if, or how much of, this decline resulted from the oil spill has been difficult because a number of other physical and ecological drivers are confounded temporally with the spill; some of these drivers include environmental variability or changing climate regimes, increased production of hatchery salmon in the region, and increases in populations of potential predators. Using data pre- and post-spill, we applied time-series methods to evaluate support for whether and how herring and salmon productivity has been affected by each of five drivers: (1) density dependence, (2) the EVOS event, (3) changing environmental conditions, (4) interspecific competition on juvenile fish, and (5) predation and competition from adult fish or, in the case of herring, humpback whales. Our results showed support for intraspecific density-dependent effects in herring, sockeye, and Chinook salmon, with little overall support for an oil spill effect. Of the salmon species, the largest driver was the negative impact of adult pink salmon returns on sockeye salmon productivity. Herring productivity was most strongly affected by changing environmental conditions; specifically, freshwater discharge into the Gulf of Alaska was linked to a series of recruitment failures—before, during, and after EVOS. These results highlight the need to better understand long terms impacts of pink salmon on food webs, as well as the interactions between nearshore species and freshwater inputs, particularly as they relate to climate change and increasing water temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.