TiO2(110) single crystals, doped with nitrogen via an NH3 treatment at 870 K, have been found to exhibit
photoactivity at photon energies down to 2.4 eV, which is 0.6 eV below the band-gap energy for rutile TiO2.
The active dopant state of the interstitial nitrogen that is responsible for this effect exhibits an N (1s) binding
energy of 399.6 eV and is due to a form of nitrogen that is probably bound to hydrogen, which differs from
the substitutional nitride state with an N (1s) binding energy of 396.7 eV. Optical absorption measurements
also show enhanced absorption down to 2.4 eV for the NH3-treated TiO2(110). A co-doping effect between
nitrogen and hydrogen is postulated to be responsible for the enhanced photoactivity of nitrogen-doped TiO2
materials in the range of visible light.
Single-walled nanotubes (SWNTs) produced by plasma laser vaporization (PLV) and containing oxidized surface functional groups have been studied for the first time with NEXAFS. Comparisons are made to SWNTs made by catalytic synthesis over Fe particles in high-pressure CO, called HiPco material. The results indicate that the acid purification and cutting of single-walled nanotubes with either HNO3/H2SO4 or H2O2/H2SO4 mixtures produces the oxidized groups (O/C = 5.5-6.7%), which exhibit both pi*(CO) and sigma*(CO) C K-edge NEXAFS resonances. This indicates that both carbonyl (C=O) and ether C-O-C functionalities are present. Upon heating in a vacuum to 500-600 K, the pi*(CO) resonances are observed to decrease in intensity; on heating to 1073 K, the sigma*(CO) resonances disappear as the C-O-C functional groups are decomposed. Raman spectral measurements indicate that the basic tubular structure of the SWNTs is not perturbed by heating to 1073 K, based on the invariance of the ring breathing modes upon heating. The NEXAFS studies agree well with infrared studies which show that carboxylic acid groups are thermally destroyed first, followed by the more difficult destruction of ether and quinone groups. Single-walled nanotubes produced by the HiPco process, and not treated with oxidizing acids, exhibit an O/C ratio of 1.9% and do not exhibit either pi*(CO) or sigma*(CO) resonances at the detection limit of NEXAFS. It is shown that heating (to 1073 K) of the PLV-SWNTs containing the functional groups produces C K-edge NEXAFS spectra very similar to those seen for the HiPco material. The NEXAFS spectra are calibrated against spectra measured for a number of fused-ring aromatic hydrocarbon molecules containing various types of oxidized functional groups present on the oxidized SWNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.