Diarrhea is an important cause of morbidity and mortality, worldwide. Giardia intestinalis, Cryptosporidium spp., and Entamoeba histolytica are the most common diarrhea-causing parasitic protozoa. Diagnosis of these parasites is usually performed by microscopy. However, microscopy lacks sensitivity and specificity. Replacing microscopy with more sensitive and specific nucleic acid based methods is hampered by the higher costs, in particular in developing countries. Multiplexing the detection of more than one parasite in a single test by real-time polymerase chain reaction (PCR) has been found to be very effective and would decrease the cost of the test. In the present study, stool samples collected from 396 Egyptian patients complaining of diarrhea along with 202 faecal samples from healthy controls were examined microscopically by direct smear method and after concentration using formol-ethyl acetate. Frozen portions of the same samples were tested by multiplex real-time for simultaneous detection of E. histolytica, G. intestinalis, and Cryptosporidium spp. The results indicate that among diarrheal patients in Egypt G. intestinalis is the most common protozoan parasite, with prevalence rates of 30.5 and 37.1 %, depending on the method used (microscopy vs. multiplex real-time PCR). Cryptosporidium spp. was detected in 1 % of the diarrheal patients by microscopy and in 3 % by real-time PCR. While E. histolytica/dispar was detected in 10.8 % by microscopy, less than one fifth of them (2 %) were found true positive for Entamoeba dispar by real-time PCR. E. histolytica DNA was not detected in any of the diarrheal patients. In comparison with multiplex real-time PCR, microscopy exhibited many false positive and negative cases with the three parasites giving sensitivities and specificities of 100 and 91 % for E. histolytica/dispar, 57.8 and 85.5 % for G. intestinalis, and 33.3 and 100 % for Cryptosporidium spp.
Schistosomiasis affects millions globally. There is no vaccine, and treatment depends entirely on praziquantel (PZQ). Field isolates exhibit reduced susceptibility to PZQ, and resistance has been experimentally induced, suggesting that reliance on a single treatment is particularly dangerous. The present study investigated the value of cinnarizine and griseofulvin against Schistosoma mansoni through their in vitro effects on adult worms and oviposition as well as in vivo evaluation in early and late infection, compared to PZQ, in a preliminary experimental model. In vitro, both cinnarizine and griseofulvin showed uncoupling, sluggish worm movement and complete absence of ova at 100 μg/ml. In early infection, cinnarizine showed a significant reduction in the number of porto-mesenteric couples compared to the griseofulvin and control groups, a finding similar to PZQ. Remarkably, cinnarizine significantly exceeded PZQ and griseofulvin in reducing the total worm burden. In late infection, cinnarizine and griseofulvin showed results similar to PZQ by significantly reducing the numbers of hepatic and porto-mesenteric couples and total worm burden compared to controls. Cinnarizine performed better than griseofulvin by reducing hepatic and intestinal ovum counts, and it led to complete disappearance of the first two immature stages. The current work suggests the possibility of using cinnarizine and griseofulvin, mainly in late S. mansoni infection, especially cinnarizine, which showed similar results to PZQ and surpassed it in early infection. Further studies are required to elucidate their exact mechanisms of action and particularly their synergistic effect with PZQ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.