Abstract. The events in the biogenesis of secretory granules after the budding of a dense-cored vesicle from the trans-Golgi network (TGN) were investigated in the neuroendocrine cell line PC12, using sulfatelabeled secretogranin II as a marker. The TGN-derived dense-cored vesicles, which we refer to as immature secretory granules, were found to be obligatory organellar intermediates in the biogenesis of the mature secretory granules which accumulate in the cell . Immature secretory granules were converted to mature secretory granules with a half-time of =45 min . This conversion entailed an increase in their size, implying that the maturation of secretory granules includes a fusion event involving immature secretory granules. Pulse-chase labeling of PC12 cells followed by stimulation with high T
Monoclonal antibodies were raised against antibodies to distinct carboxy-terminal KDEL sequences of two soluble, resident endoplasmic reticulum proteins. These anti-idiotype reagents recognize an intrinsic membrane protein with characteristics expected of a receptor responsible for the recognition and return of resident proteins to the endoplasmic reticulum.
Abstract. By pulse-chase labeling with [35S]methionine and long-term labeling with 3H-sugars, the E1 glycoprotein of coronavirus MHV-A59 has been shown to acquire O-linked oligosaccharides in a two-step process. About 10 min after synthesis of the E1 protein, N-acetyl-galactosamine was added. This was followed ~10 min later by the addition of both galactose and sialic acid to give the mature oligosaccharides. This sequence of additions was confirmed by analyzing the 3H-labeled oligosaccharides bound to each of the El forms using gel filtration on P4 columns. The intracellular location of the first step was determined by exploiting the temperature sensitivity of virus release. The virus normally buds first into a smooth membrane compartment lying between the rough endoplasmic reticulum and the cis side of the Golgi stack (Tooze et al., 1984). At 31°C the virus is assembled but does not appear to enter the Golgi stacks. The addition of N-acetyl-galactosamine is unaffected although the addition of galactose and sialic acid is inhibited. These results strongly suggest that addition of N-acetyl-galactosamine occurs in this budding compartment, the morphology of which is similar to that of transitional elements and vesicles.
Abstract. We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.