Background
In rituximab-treated patients with rheumatoid arthritis, humoral and cellular immune responses after two or three doses of SARS-CoV-2 vaccines are not well characterised. We aimed to address this knowledge gap.
Methods
This prospective, cohort study (Nor-vaC) was done at two hospitals in Norway. For this sub-study, we enrolled patients with rheumatoid arthritis on rituximab treatment and healthy controls who received SARS-CoV-2 vaccines according to the Norwegian national vaccination programme. Patients with insufficient serological responses to two doses (antibody to the receptor-binding domain [RBD] of the SARS-CoV-2 spike protein concentration <100 arbitrary units [AU]/mL) were allotted a third vaccine dose. Antibodies to the RBD of the SARS-CoV-2 spike protein were measured in serum 2–4 weeks after the second and third doses. Vaccine-elicited T-cell responses were assessed in vitro using blood samples taken before and 7–10 days after the second dose and 3 weeks after the third dose from a subset of patients by stimulating cryopreserved peripheral blood mononuclear cells with spike protein peptides. The main outcomes were the proportions of participants with serological responses (anti-RBD antibody concentrations of ≥70 AU/mL) and T-cell responses to spike peptides following two and three doses of SARS-CoV-2 vaccines. The study is registered at
ClinicalTrials.gov
,
NCT04798625
, and is ongoing.
Findings
Between Feb 9, 2021, and May 27, 2021, 90 patients were enrolled, 87 of whom donated serum and were included in our analyses (69 [79·3%] women and 18 [20·7%] men). 1114 healthy controls were included (854 [76·7%] women and 260 [23·3%] men). 49 patients were allotted a third vaccine dose. 19 (21·8%) of 87 patients, compared with 1096 (98·4%) of 1114 healthy controls, had a serological response after two doses (p<0·0001). Time since last rituximab infusion (median 267 days [IQR 222–324] in responders
vs
107 days [80–152] in non-responders) and vaccine type (mRNA-1273
vs
BNT162b2) were significantly associated with serological response (adjusting for age and sex). After two doses, 10 (53%) of 19 patients had CD4
+
T-cell responses and 14 (74%) had CD8
+
T-cell responses. A third vaccine dose induced serological responses in eight (16·3%) of 49 patients, but induced CD4
+
and CD8
+
T-cell responses in all patients assessed (n=12), including responses to the SARS-CoV-2 delta variant (B.1.617.2). Adverse events were reported in 32 (48%) of 67 patients and in 191 (78%) of 244 healthy controls after two doses, with the frequency not increasing after the third dose. There were no serious adverse events or deaths.
Interpretation
This study provides important insight into the divergent humoral an...
This cohort study investigates the immunogenicity and safety of a third SARS-CoV-2 vaccine dose in patients with multiple sclerosis who had a weak immune response to COVID-19 vaccination.
IntroductionThe effect of disease-modifying therapies (DMT) on vaccine responses is largely unknown. Understanding the development of protective immunity is of paramount importance to fight the COVID-19 pandemic.ObjectiveTo characterise humoral immunity after mRNA-COVID-19 vaccination of people with multiple sclerosis (pwMS).MethodsAll pwMS in Norway fully vaccinated against SARS-CoV-2 were invited to a national screening study. Humoral immunity was assessed by measuring anti-SARS-CoV-2 SPIKE RBD IgG response 3–12 weeks after full vaccination, and compared with healthy subjects.Results528 pwMS and 627 healthy subjects were included. Reduced humoral immunity (anti-SARS-CoV-2 IgG <70 arbitrary units) was present in 82% and 80% of all pwMS treated with fingolimod and rituximab, respectively, while patients treated with other DMT showed similar rates as healthy subjects and untreated pwMS. We found a significant correlation between time since the last rituximab dose and the development of humoral immunity. Revaccination in two seronegative patients induced a weak antibody response.ConclusionsPatients treated with fingolimod or rituximab should be informed about the risk of reduced humoral immunity and vaccinations should be timed carefully in rituximab patients. Our results identify the need for studies regarding the durability of vaccine responses, the role of cellular immunity and revaccinations.
The SARS-CoV-2 Omicron variant has more than 15 mutations in the receptor binding domain of the Spike protein enabling increased transmissibility and viral escape from antibodies in vaccinated individuals. It is unclear how vaccine immunity protects against Omicron infection. Here we show that vaccinated participants at a super-spreader event have robust recall response of humoral and pre-existing cellular immunity induced by the vaccines, and an emergent de novo T cell response to non-Spike antigens. Individuals with Omicron SARS-CoV-2 breakthrough infections have significantly increased activated SARS-CoV-2 wild type Spike-specific cytotoxic T cells, activated follicular helper (TFH) cells, functional T cell responses, boosted humoral responses, and rapid release of Spike and RBD-specific IgG+ B cell plasmablasts and memory B cells into circulation. Omicron breakthrough infection affords significantly increased de novo memory T cell responses to non-Spike viral antigens. Concerted T and B cell responses may provide durable and broad immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.