Our data suggest that the phenotype associated with POU1F1 mutations may be more variable, with the occasional preservation of TSH secretion. Additionally, our data revealed POU1F1 mutations in three patients who were diagnosed as having ACTH deficiency but who, on further evaluation, were found to have normal cortisol secretion. Hence, elucidation of the genotype led to further evaluation of the phenotype, with the cessation of cortisol replacement that had been commenced unnecessarily. These data reflect the importance of mutational analysis in patients with CPHD.
Our findings suggest that the development of AN in patients with ACH/HCH is not due to insulin insensitivity either on its own or secondary to treatment with recombinant human GH. Whether the AN is due to altered melanocyte function in these individuals remains to be established.
The positive regulatory (PR) domain containing 13 (PRDM13) putative chromatin modifier and transcriptional regulator functions downstream of the transcription factor PTF1A, which controls GABAergic fate in the spinal cord and neurogenesis in the hypothalamus. Here, we report a recessive syndrome associated with
PRDM13
mutation. Patients exhibited intellectual disability, ataxia with cerebellar hypoplasia, scoliosis, and delayed puberty with congenital hypogonadotropic hypogonadism (CHH). Expression studies revealed
Prdm13/PRDM13
transcripts in the developing hypothalamus and cerebellum in mouse and human. An analysis of hypothalamus and cerebellum development in mice homozygous for a
Prdm13
mutant allele revealed a significant reduction in the number of Kisspeptin (Kiss1) neurons in the hypothalamus and PAX2
+
progenitors emerging from the cerebellar ventricular zone. The latter was accompanied by ectopic expression of the glutamatergic lineage marker TLX3.
Prdm13
-deficient mice displayed cerebellar hypoplasia and normal gonadal structure, but delayed pubertal onset. Together, these findings identify PRDM13 as a critical regulator of GABAergic cell fate in the cerebellum and of hypothalamic kisspeptin neuron development, providing a mechanistic explanation for the cooccurrence of CHH and cerebellar hypoplasia in this syndrome. To our knowledge, this is the first evidence linking disrupted PRDM13-mediated regulation of Kiss1 neurons to CHH in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.