In vitro chemical safety testing methods offer the potential for efficient and economical tools to provide relevant assessments of human health risk. To realize this potential, methods are needed to relate in vitro effects to in vivo responses, i.e., in vitro to in vivo extrapolation (IVIVE). Currently available IVIVE approaches need to be refined before they can be utilized for regulatory decision-making. To explore the capabilities and limitations of IVIVE within this context, the U.S. Environmental Protection Agency Office of Research and Development and the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods co-organized a workshop and webinar series. Here, we integrate content from the webinars and workshop to discuss activities and resources that would promote inclusion of IVIVE in regulatory decision-making. We discuss properties of models that successfully generate predictions of in vivo doses from effective in vitro concentration, including the experimental systems that provide input parameters for these models, areas of success, and areas for improvement to reduce model uncertainty. Finally, we provide case studies on the uses of IVIVE in safety assessments, which highlight the respective differences, information requirements, and outcomes across various approaches when applied for decision-making.
Skin protein reactivity is a well established key step in the development of skin sensitization. Understanding the relationship between a chemical's ability to react with or modify skin protein and skin sensitization has led to the development of the Direct Peptide Reactivity Assay (DPRA) in our laboratory. A current limitation of the DPRA is that it cannot readily measure the reactivity of pro-hapten chemical sensitizers. Pro-haptens are chemical sensitizers that are not directly reactive and must be bioactivated in vivo to form an electrophilic intermediate(s). Results from this work demonstrate the utility of using horseradish peroxidase and hydrogen peroxide (HRP/P) for assessing the skin sensitization potential of pro-haptens. In comparison with "direct" reactivity assessments without HRP/P, statistically significant increases in peptide depletion for all pro-haptens examined were observed following coincubation with HRP/P. Conversely, the percent peptide depletion for all pre-haptens was equally high (> 40% depletion) with and without HRP/P demonstrating an auto-oxidation pathway. In contrast, peptide depletion for all nonsensitizing chemicals examined was low with and without HRP/P. The optimal HRP/P concentrations, incubation time and optimal peptide:chemical ratio were determined using a sensitive and selective high-performance liquid chromatography tandem mass spectrometry detection method. Dithiothreitol was incorporated to reverse the dimerization of the thiol-containing cysteine peptide nucleophile. This preliminary work shows the potential to incorporate an enzyme-mediated activation step for pro-haptens into an in chemico skin sensitization assay that results in the detection of all types of sensitizers.
Highlights
PBK models have helped to facilitate quantitative
in vitro
to
in vivo
extrapolation.
PBK modelling has the potential to play a significant role in reducing animal testing.
It is critical to assess the validity of PBK models built using non-animal data.
A framework is needed for communicating characteristics and results of PBK modelling.
To establish further a practical quantitative in chemico reactivity assay for screening contact allergens, lysine peptide was incorporated into a liquid chromatography and tandem mass spectrometry-based assay for reactivity assessments of hapten and pre-/pro-hapten chemical sensitizers. Loss of peptide was determined following 24 h coincubation with test chemical using a concentration-response study design. A total of 70 chemicals were tested in discrete reactions with cysteine or lysine peptide, in the presence and absence of horseradish peroxidase-hydrogen peroxide oxidation system. An empirically derived prediction model for discriminating sensitizers from nonsensitizers resulted in an accuracy of 83% for 26 haptens, 19 pre-/pro-haptens, and 25 nonsensitizers. Four sensitizers were shown to selectively react with lysine including two strong/extreme and two weak sensitizers. In addition, seven sensitizers were identified as having higher reactivity toward lysine compared with cysteine. The majority of sensitizing chemicals (27/45) were reactive toward both cysteine and lysine peptides. An estimate of the relative reactivity potency was determined based on the concentration of test chemical that depletes peptide at or above a threshold positive value. Here, we report the use of EC15 as one example to illustrate the use of the model for screening the skin sensitization potential of novel chemicals. Results from this initial assessment highlight the utility of lysine for assessing a chemical's potential to elicit sensitization reactions or induce hypersensitivity. This approach has the potential to qualitatively and quantitatively evaluate an important mechanism in contact allergy for hazard and quantitative risk assessments without animal testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.