Swiss white mice were given ampicillin, clindamycin, kanamycin, metronidazole, or streptomycin in drinking water for a period of 3 weeks. One week after the initiation of antibiotic administration, the treated mice and untreated control mice were challenged orally with approximately 108 viable, streptomycin-resistant (SR) Pseudomonas aeruginosa isolates. All five of the antibiotics decreased the resistance of the mice to intestinal colonization with SR P. aeruginosa, as reflected by an increased fecal carriage of the organism and an increase in population levels of SR P. aeruginosa in feces as compared with untreated controls. Metronidazole was least effective in this regard. The antibiotics lowered the dose of SR P. aeruginosa that resulted in implantation in 50% of the mice ID50 to various degrees. Administration of streptomycin, the most effective antibiotic, caused a 10,000-fold decrease in ID50 as compared with untreated controls. Oral inoculation of approximately 108 organisms of SR P. aeruginosa resulted in translocation of the organism to the * Corresponding author.
Regular vaccination of young CF patients for a period of 10 years with a polyvalent conjugate vaccine reduced the frequency of chronic infection with P. aeruginosa. This was associated with better preservation of lung function. Vaccinated patients gained more weight during the study period, a possible indication of an improved overall health status.
The addition of 5 mg of streptomycin sulfate per ml to the drinking water of Swiss white mice resulted in a 100,000-fold reduction in the 50% implantation dose of streptomycin-resistant Salmonella typhimurium for the animals. When streptomycin-treated and untreated mice were challenged orogastrically with 103 viable S. typhimurium organisms, 100% of the treated and none of the untreated mice excreted the pathogen in their feces. Similarly, translocation of S. typhimurium from the intestinal tract to the liver, spleen, and mesentery occurred in 10 of 10 treated mice but in none of the untreated mice 7 days after challenge with 103 CFU. Studies of colonization dynamics showed that S. typhimurium was present at high population levels in the intestines of streptomycin-treated mice and in detectable levels in the liver, spleen, and mesentery within 72 h after challenge with 103, 105, or 108 organisms. In untreated mice challenged with either 103 or 105 S. typhimurium organisms, the organisms were isolated from ileal and cecal tissues but not from ileal or cecal contents or from extraintestinal tissue 72 h after challenge. When untreated mice were challenged with 108 organisms, however, S. typhimurium was present in all organs and in intestinal contents. Streptomycin treatment, therefore, facilitated colonization and development of streptomycin-resistant S. typhimurium populations in intestines of mice and the subsequent translocation of the organisms from the intestinal tract to other tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.