Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. To gain a better understanding into aircraft loss-of-control events and possible intervention strategies, this paper presents a detailed analysis of loss-of-control accident data (predominantly from Part 121), including worst case combinations of causal and contributing factors and their sequencing. Future potential risks are also considered.
As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.
As part of the NASA Aviation Safety Program at Langley Research Center, a dynamically scaled unmanned aerial vehicle (UAV) and associated ground based control system are being developed to investigate dynamics modeling and control of large transport vehicles in upset conditions. The UAV is a 5.5% (seven foot wingspan), twin turbine, generic transport aircraft with a sophisticated instrumentation and telemetry package. A ground based, real-time control system is located inside an operations vehicle for the research pilot and associated support personnel. The telemetry system supports over 70 channels of data plus video for the downlink and 30 channels for the control uplink. Data rates are in excess of 200 Hz. Dynamic scaling of the UAV, which includes dimensional, weight, inertial, actuation, and control system scaling, is required so that the sub-scale vehicle will realistically simulate the flight characteristics of the full-scale aircraft. This testbed will be utilized to validate modeling methods, flight dynamics characteristics, and control system designs for large transport aircraft, with the end goal being the development of technologies to reduce the fatal accident rate due to loss-of-control.
The new Federal Aviation Administration (FAA) Small Unmanned Aircraft rule (Part 107) marks the first national regulations for commercial operation of small unmanned aircraft systems (sUAS) under 55 pounds within the National Airspace System (NAS). Although sUAS flights may not be performed beyond visual line-of-sight or over nonparticipant structures and people, safety of sUAS operations must still be maintained and tracked at all times. Moreover, future safety-critical operation of sUAS (e.g., for package delivery) are already being conceived and tested. NASA's Unmanned Aircraft System Traffic Management (UTM) concept aims to facilitate the safe use of low-altitude airspace for sUAS operations. This paper introduces the UTM Risk Assessment Framework (URAF) which was developed to provide real-time safety evaluation and tracking capability within the UTM concept. The URAF uses Bayesian Belief Networks (BBNs) to propagate off-nominal condition probabilities based on real-time component failure indicators. This information is then used to assess the risk to people on the ground by calculating the potential impact area and the effects of the impact. The visual representation of the expected area of impact and the nominal risk level can assist operators and controllers with dynamic trajectory planning and execution. The URAF was applied to a case study to illustrate the concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.