Since the last classification of Orchidaceae in 2003, there has been major progress in the determination of relationships, and we present here a revised classification including a list of all 736 currently recognized genera. A number of generic changes have occurred in Orchideae (Orchidoideae), but the majority of changes have occurred in Epidendroideae. In the latter, almost all of the problematic placements recognized in the previous classification 11 years ago have now been resolved. In Epidendroideae, we have recognized three new tribes (relative to the last classification): Thaieae (monogeneric) for Thaia, which was previously considered to be the only taxon incertae sedis; Xerorchideae (monogeneric) for Xerorchis; and Wullschlaegelieae for achlorophyllous Wullschlaegelia, which had tentatively been placed in Calypsoeae. Another genus, Devogelia, takes the place of Thaia as incertae sedis in Epidendroideae. Gastrodieae are clearly placed among the tribes in the neottioid grade, with Neottieae sister to the remainder of Epidendroideae. Arethuseae are sister to the rest of the higher Epidendroideae, which is unsurprising given their mostly soft pollinia. Tribal relationships within Epidendroideae have been much clarified by analyses of multiple plastid DNA regions and the low-copy nuclear gene Xdh. Four major clades within the remainder of Epidendroideae are recognized: Vandeae/Podochileae/Collabieae, Cymbidieae, Malaxideae and Epidendreae, the last now including Calypsoinae (previously recognized as a tribe on its own) and Agrostophyllinae s.s. Agrostophyllinae and Collabiinae were unplaced subtribes in the 2003 classification. The former are now split between two subtribes, Agrostophyllinae s.s. and Adrorhizinae, the first now included in Epidendreae and the second in Vandeae. Collabiinae, also probably related to Vandeae, are now elevated to a tribe along with Podochileae. Malaxis and relatives are placed in Malaxidinae and included with Dendrobiinae in Malaxideae. The increased resolution and content of larger clades, recognized here as tribes, do not support the 'phylads' in Epidendroideae proposed 22 years ago by Dressler.
Parasitic organisms exemplify morphological and genomic reduction. Some heterotrophic, parasitic plants harbor drastically reduced and degraded plastid genomes resulting from relaxed selective pressure on photosynthetic function. However, few studies have addressed the initial stages of plastome degradation in groups containing both photosynthetic and nonphotosynthetic species. Corallorhiza is a genus of leafless, heterotrophic orchids that contains both green, photosynthetic species and nongreen, putatively nonphotosynthetic species, and represents an ideal system in which to assess the beginning of the transition to a "minimal plastome." Complete plastomes were generated for nine taxa of Corallorhiza using Illumina paired-end sequencing of genomic DNA to assess the degree of degradation among taxa, and for comparison with a general model of degradation among angiosperms. Quantification of total chlorophyll suggests that nongreen Corallorhiza still produce chlorophyll, but at 10-fold lower concentrations than green congeners. Complete plastomes and partial nuclear rDNA cistrons yielded a fully resolved tree for Corallorhiza, with at least two independent losses of photosynthesis, evidenced by gene deletions and pseudogenes in Co. striata and nongreen Co. maculata. All Corallorhiza show some evidence of degradation in genes of the NAD(P)H dehydrogenase complex. Among genes with open reading frames, photosynthesis-related genes displayed evidence of neutral evolution in nongreen Corallorhiza, whereas genes of the ATP synthase complex displayed some evidence of positive selection in these same groups, though for reasons unknown. Corallorhiza spans the early stages of a general model of plastome degradation and has added critical insight for understanding the process of plastome evolution in heterotrophic angiosperms.
While hybridization has recently received a resurgence of attention from systematists and evolutionary biologists, there remains a dearth of case studies on ancient, diversified hybrid lineages-clades of organisms that originated through reticulation. Studies on these groups are valuable in that they would speak to the long-term phylogenetic success of lineages following gene flow between species. We present a phylogenomic view of Heuchera, long known for frequent hybridization, incorporating all three independent genomes: targeted nuclear (~400,000 bp), plastid (~160,000 bp), and mitochondrial (~470,000 bp) data. We analyze these data using multiple concatenation and coalescence strategies. The nuclear phylogeny is consistent with previous work and with morphology, confidently suggesting a monophyletic Heuchera. By contrast, analyses of both organellar genomes recover a grossly polyphyletic Heuchera,consisting of three primary clades with relationships extensively rearranged within these as well. A minority of nuclear loci also exhibit phylogenetic discord; yet these topologies remarkably never resemble the pattern of organellar loci and largely present low levels of discord inter alia. Two independent estimates of the coalescent branch length of the ancestor of Heuchera using nuclear data suggest rare or nonexistent incomplete lineage sorting with related clades, inconsistent with the observed gross polyphyly of organellar genomes (confirmed by simulation of gene trees under the coalescent). These observations, in combination with previous work, strongly suggest hybridization as the cause of this phylogenetic discord. [Ancient hybridization; chloroplast capture; incongruence; phylogenomics; reticulation.].
All tested characters show significant association with speciation in Epidendroideae, suggesting that no single character accounts for the success of this group. Rather, it appears that a succession of key features appeared that have contributed to diversification, sometimes in parallel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.